The effect of hydrostatic pressure on the radiative recombination rate of InGaN/GaN multiple quantum well solar cells

Document Type : Original Article

Authors

Department of Physics, Khoy Branch, Islamic Azad University, Khoy, Iran

Abstract

In this paper, a numerical model is used to analyze photovoltaic parameters according to the electronic properties of InGaN/GaN multiple-quantum-well solar cells (MQWSC) under hydrostatic pressure. Finite difference techniques have been used to acquire energy eigenvalues and corresponding eigenfunctions of InGaN/GaN MQWSC, where all eigenstates are calculated via a 6×6 k.p method under applied hydrostatic pressure. All symmetry-allowed transitions up to the fifth subband of the quantum wells (multi-subband model) with barrier optical absorption are considered. The linewidth due to the carrier-carrier and carrier-longitudinal optical (LO) phonon scattering are also considered. A change in pressure up to 10 GPa increases the intraband scattering time up to 38 fs for heavy holes and 40 fs for light holes. The raise in the height of the Lorentz function reduces the excitonic binding energy and decreases the radiative recombination rate up to 0.95×1025 cm-3S-1.  The multi-subband model has a positive effect on the radiative recombination rate.

Keywords

Main Subjects

Article Title [Persian]

تأثیر فشار هیدرواستاتیک بر میزان بازترکیبی تابشی سلولهای خورشیدی InGaN/GaN باچاه کوانتومی چند گانه

Authors [Persian]

  • رجب یحیی زاده
  • زهرا هاشم پور

گروه فیزیک، واحد خوی، دانشگاه آزاد اسلامی، خوی، ایران

Abstract [Persian]

در این مقاله ، از یک مدل عددی برای تجزیه و تحلیل پارامترهای فتو-ولتیک با توجه به خصوصیات الکترونیکی سلول های خورشیدی InGaN/GaN با چاه کوانتومی چندگانه (MQWSC) تحت فشار هیدرواستاتیک استفاده شده است. از تکنیک های دیفرانسیل محدود برای بدست آوردن مقادیر ویژه انرژی و توابع ویژه الکترونی و روش k.p برای حفره ها تحت فشار هیدرواستاتیک اعمال شده استفاده می شود. تمام گذارهای مجاز متقارن تا زیر باند پنجم چاههای کوانتوم (مدل چند زیر باند) و جذب نوری سد در نظر گرفته شده است. عرض خطی ناشی از پراکندگی های حاملها باهم و حامل ها با فونونهای طولی (LO) نیز در نظر گرفته شده است. تغییر فشار تا 10 گیگا پاسکال باعث افزایش زمان پراکندگی داخل باند تا 38 فمتو ثانیه برای حفره های سنگین و 40 فمتو ثانیه برای حفره های سبک می شود، ارتفاع تابع لورنتس را افزایش می دهد، انرژی گذار بین نواری را کاهش می دهد و سرعت بازترکیبی تابشی را کاهش می دهد. مدل چند زیر باند تأثیر مثبتی بر میزان بازترکیبی تابشی دارد.

Keywords [Persian]

  • آهنگ بازترکیب
  • سلول خورشیدی
  • جذب نوری
  • چاه کوانتومی چند گانه
  1. Boudaoud, A. Hamdoune, Z. Allam, “Simulation and optimization of a tandem solar cell based on InGaN,” Mathematics and Computers in Simulation. 167 (2020) 194-201.
  2. Kuc, L. Piskorski, M. Dems, M. Wasiak, A. K. Sokoł, Robert P. Sarzała, T. Czyszanowski, “Numerical Investigation of the Impact of ITO, AlInN, Plasmonic GaN and Top Gold Metalization on Semipolar Green EELs,” Materials. 13 (2020) 1444.
  3. Tian, L. Hu, L. Zhang, J. Liu, H. Yang, “Design and growth of GaN-based blue and green laser diodes,” Sci China Mater. 63 (2020) 1348–1363.
  4. Pandey, W. J. Shin, J. Gim, R. Hovden, Z. Mi, “High-efficiency AlGaN/GaN/AlGaN tunnel junction ultraviolet light-emitting diodes,” Photonics Research. 8 (2020) 331-337.
  5. Huang, H. Chen et al, “Energy band engineering of InGaN/GaN multi-quantum-well solar cells via AlGaN electron- and hole-blocking layers,” Appl Phys Lett. 113 (2018) 043501.
  6. G. Bhuiyan, K. Sugita, A. Hashimoto, A. Yamamoto, “InGaN solar cells: present state of the art and important challenges,” IEEE J Photovolt. 2 (2012) 276-293.
  7. Wu, W. Walukiewicz et al, “Small band gap bowing in alloys,”  Appl. Phys. Lett, 80 (2002) 4741.
  8. Yahyazadeh, “Effect of hydrostatic Pressure on Optical Absorption Spectrum AlGaN/GaN Multi-quantum wells,” Journal of Interfaces, Thin films, and Low dimensional systems. 3 (2021) 279-287.
  9. Yahyazadeh, Z. hashempour, “Effects of Hydrostatic Pressure and Temperature on the AlGaN/GaN High Electron Mobility Transistors,” Journal of Interfaces, Thin films, and Low dimensional systems. 2 (2019) 183-194.
  10. Deng et al, “An investigation on InxGa1−xN/GaN multiple quantum well solar cells,” J. Phy. D: Appl. Phy. 44 (2011) 265103.
  11. Belghouthi, M. Aillerie, “Temperatur dependece of InGaN/GaN Multiple quantum well solar cell,” Energy Procedia. 157 (2019) 793.
  12. Chouchen, M. H. Gazzah, A. Bajahzar, Hafedh Belmabrouk, “Numerical Modeling of the Electronic and Electrical Characteristics of InGaN/GaN-MQW Solar Cells,” Materials. 12 (2019) 1241.
  13. Yahyazadeh, “Numerical Modeling of  the Electronic and Electrical Characteristics of InGaN/GaN Multiple Quantum Well Solar Cells,” J. of Photonics for Energy. 10 (2020) 045504.
  14. Huang, “Piezo-Phototronic Effect in a Quantum Well Structure,” ACS Nano. 10 (2016) 5145.
  15. Ambacher, A. B. Foutz, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu et al, “Two dimensional electron gases induced by spontaneous and piezoelectric polarization in undoped and doped AlGaN/GaN heterostructures,” J. Appl. Phys. 87 (2000) 334.
  16. Ambacher, J. Majewski, C. Miskys, et al, “Pyroelectric properties of Al (In) GaN/GaN hetero- and quantum well structures,” J. Phys. Condens. Matter. 14 (2002) 3399.
  17. J. Feng, Z. J. Cheng, and H. Yue, ‘Temperature dependence of Hall electron density of GaN-based heterostructures,” Chinese Physics. 13 (2004) 1334.
  18. Fiorentini, F. Bernardini, and O. Ambacher, “Evidence for nonlinear macroscopic polarization in III–V nitride alloy Heterostructures,” Appl. Phys. Lett. 80 (2002) 1204.
  19. Perlin, L. Mattos, N. A. Shapiro, J. Kruger, W. S. Wong, T. Sands, N. W. Cheung, E. R. Weber, “Reduction of the energy gap pressure coefficient of GaN due to the constraining presence of the sapphire substrate,” J. Appl. Phys. 85 (1999) 2385.
  20. J Bala, A. J Peter, C. W Lee, “Simultaneous effects of pressure and temperature on the optical transition energies in a Ga0.7In0.3N/GaN quantum ring,” Chemical Physics. 495 (2017) 42.
  21. Vurgaftman, J. R Meyer, L. R. R Mohan, “Band parameters for III–V compound semiconductors and their alloys,” J. Appl. Phys. 89 (2001) 5815.
  22. Jogai, “Influence of surface states on the two-dimensional electron gas in AlGaN/GaN heterojunction field-effect transistors,” Journal of Applied Physics. 93 (2003) 1631.
  23. Jogai, “Parasitic Hole Channels in AlGaN/GaN Heterojunction Structures,” Phys. stat. sol. (b), 233 (2002) 506.
  24. B. Yekta, H. Kaatuzian, “Design considerations to improve high temperature characteristics of 1.3μm AlGaInAs-InP uncooled multiple quantum well lasers: Strain in barriers,” Optik. 122 (2011) 514.
  25. Piprek. Semiconductor Optoelectronic Devices: Introduction to Physics and Simulation. Elsevier Scince, San Diego.California (2013) 121-129.
  26. S. Zory, Quantum well lasers, Academic. San Diego, CA. (1993) 58-150.  
  27. D. Mahan, Many-body particle physics. Plenum press, New York and London, Chap.3 (1990).
  28. Wei-Ying et al, “Effects of interface roughness on photoluminescence full width at half maximum in GaN/AlGaN quantum wells,” Chin. Phys. B. 23 (2014) 117803.
  29. yahyazadeh, Z. Hashempour.  “Numerical Modeling of Electronic and Electrical Characteristics of Multiple Quantum Well Solar Cells Al0.3Ga0.7N/GaN,” Journal of Optoelectronical Nanostructures. 5 (2020) 81.
  30. H. Ha, S. L. Ban, “Binding energies of excitons in a strained wurtzite GaN/AlGaN quantum well influenced by screening and hydrostatic pressure,” J. Phys.: Condens. Matter. 20 (2008) 085218.
  31. G. Rojas-Briseno, I. Rodriguez-Vargas, M. E. Mora-Ramos, J.C. Martínez-Orozco, “Heavy and light exciton states in c-AlGaN/GaN asymmetric double quantum wells,” Physica E. 124 (2020) 114248.
  32. Harrison, A. Valavanis, Quantum Wells, Wires and Dots: Theoretical and Computational Physics of Semiconductor Nanostructures, 4th ed., Wiley (2016).
  33. Kasapoglu, H. Sari, N. Balkan, I. Sokmen, Y. Ergun, “Binding energy of excitons in symmetric and asymmetric coupled double quantum wells in a uniform magnetic field,” Semicond. Sci. Technol. 15 (2000) 219 .
  34. G. Rojas-Briseño, J.C. Martínez-Orozco, M.E. Mora-Ramos, “States of direct and indirect excitons in strained zinc-blende GaN/InGaN asymmetric quantum wells,” Superlattices and Microstructures. 112 (2017) 574-583.
  35. R Yahyazadeh, Hashempour, “Effect of Hydrostatic Pressure and Temperature on Quantum Confinement of AlGaN/GaN HEMTs,” Journal of Science and Technology,13 (2021) . 1-11
  36. L. Chung, C.S. Chang, “k.p method for strained wurtzite semiconductor,” Phys. Rev. B, 54 (1996) 2502 .
  37. Adachi, Physical Properties of III-V compounds, John Wiley & Sons, (1992) 290.
  38. R. Chinn, P. S. Zory, A. R. Reisinger, “A Modal for Grin-SCH-SQW Diode Lasers,” IEEE Journal of quantum Electronics, 24 (1988) 2191.
  39. Tan, G. L. Snider, L. D. Chang, E. L. Hu. “A self-consistent solution of Schrödinger–Poisson equations using a nonuniform mesh,” J. Appl. Phys. 68 (1990) 4071.
  40. Huang et al., “Piezo-Phototronic Effect in a Quantum Well Structure,” ACS Nano. 10 (2016) 5145.
  41. L. Ruminates, M. S. Shur, “Material properties of nitrides summary,” International Journal of High Speed Electronics and Systems. 14 (2004) 1-19 .
  42. L. Chuang, Physics of Photonic Devices, 2nd ed., Wily & Sons (1995).
  43. Nelson, “ The physics of solar cells ,” Imperial college press, London,  (2003)
  44. Z. Dongmei, W. Zongchi, X. Boqi, “Correlated electron–hole transitions in wurtzite GaN quantum dots: the effects of strain and hydrostatic pressure,” J. Semicond. 33 (2012) 052002.