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In this paper, a numerical model is used to analyze photovoltaic parameters 
according to the electronic properties of InGaN/GaN multiple-quantum-well 
solar cells (MQWSC) under hydrostatic pressure. Finite difference techniques have 
been used to acquire energy eigenvalues and corresponding eigenfunctions of 
InGaN/GaN MQWSC, where all eigenstates are calculated via a 6×6 k.p method 
under an applied hydrostatic pressure. All symmetry-allowed transitions up to the 
fifth subband of the quantum wells (multi-subband model) with barrier 
optical absorption are considered. The linewidth due to the carrier-carrier and 
carrier-longitudinal optical (LO) phonon scattering are also considered. A change 
in pressure up to 10 GPa increases the intraband scattering time up to 38 fs for 
heavy holes and 40 fs for light holes. The raise in the height of the Lorentz 
function reduces the excitonic binding energy and decreases the radiative 
recombination rate up to 0.95×1025cm�3S�1. The multi-subband model has 
a positive effect on the radiative recombination rate. 

 

1 Introduction 

 Recently, indium gallium nitride alloys have attracted 

much attention for optoelectronic applications [1–4] 

due to their tunable energy bandgap varying from 0.7 

eV to 3.4 eV [5-6]. The absorption range covers a 

significant portion of the solar spectrum, making InGaN 

a promising candidate for multi-junction solar cell 

systems. Moreover, with high radiation resistance, 

thermal stability, and chemical tolerance, InGaN solar 

cells could operate in extreme conditions [7]. The 

temperature and polarization dependence are 

considered preeminent tools in evaluating optical and 

electronic characteristics in III-V nanodevices (e.g., 

solar cells and transistors) [8,9]. The optical absorption 

coefficients are one of the significant parameters in 

calculating the recombination rate in InGaN/GaN 

Multi-quantum solar cell. Therefore, to study the 

recombination rate in detail, we must calculate the 

absorption coefficients in InGaN/GaN MQWSC. The 

effect of alloy on InGaN/GaN MQWSC has been 

investigated by Deng et al. [10]. Also, the temperature 

effect on InGaN/GaN MQWSC has been studied by 

Belghouthi et al. [11] where its efficiency in different 

wells and temperatures has been considered by 

Chouchen et al. [12]. In all these studies, a simple 

analytical relation of quantum well absorption 

coefficient has been used to obtain the electrical and 

electronic characteristics; however, the role of quantum 

barrier absorption coefficient has still not been taken 

into account. Also, in our previous work [13], the 

absorption coefficient of quantum wells has been 
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calculated for the first subband transition without 

considering other subbands. We had not considered the 

effect of barrier optical absorption, three-dimensional 

exciton binding energy, and the linewidth due to the 

carrier-carrier and carrier-longitudinal optical (LO) 

phonon scattering under external disturbances. This 

paper aims to perform these corrections under an 

external perturbation (e.g., hydrostatic pressure).  In 

solar cells with a single-quantum well in the intrinsic 

region, due to the low absorption coefficient of second-

and higher-order subbands, these energy transitions are 

not very effective in the recombination rate; however, 

in multi-quantum wells in the intrinsic region, the 

second-and higher-order transitions significantly affect 

the recombination rate due to more quantum wells. The 

linewidth function (Lorentz function) is one of the most 

important functions for calculating optical parameters, 

such as optical absorption coefficient and gain. The 

optical absorption coefficient is one of the significant 

parameters in calculating photocurrent density in the 

InGaN/GaN Multi-quantum solar cell. The Lorentz 

function also depends on the scattering time and the 

transition energies. In all the work done on solar cells, 

this transition time under external perturbations is fixed 

and often considered to be 0.1ps; in the present study, 

we examine its dependence on pressure. The most 

important advantage of this numerical method and the 

aspect of innovation in this work is the use of five 

important parameters, including effective mass, energy 

gap, lattice constants, dielectric constant and quantum 

barrier, and well thickness, all of which are 

simultaneously dependent on hydrostatic pressure and 

temperature. We also consider the effect of hydrostatic 

pressure on the energy of heavy and light holes and the 

transition energy of the subbands. In this model, the 

conduction band energy, wave functions, and energy 

subbands are obtained from the self-consistent solution 

of the Schrodinger and Poisson equations. The hole 

valance bands (heavy and light hole) energy, wave 

functions, and energy subbands are calculated using a 

6 6×   k.p method. The sample used in the modelling is 

the p–i–n solar cells with an InGaN/GaN MQWSC 

structure within the i-region. The p and n regions are 

based on GaN. The donor and acceptor concentrations 

in the n- and p-region materials are assumed to be equal 

to 318
0.1 10 cm

−× , and 10 wells are considered in the 

present work. It should be notified that the calculated 

built-in polarization field for the structures is about
8 1

~ 10 Vm
− . In the present study, atmospheric and 

hydrostatic pressures are taken into account, i.e., at zero 

hydrostatic pressure only the atmospheric pressure is 

applied. The results and discussions are obtained by 

calculating and drawing the figures. 

 
 

 

2 Calculation Model 

2.1 Self‐consistent solution of Schrödinger‐
Poisson equations  

 The quantum well solar cell (QWSC) consists of a 

multiple quantum well structure in the intrinsic region 

of a p–i–n. The MQW structure introduced for the 

model is constructed by InmGa1-mN with lower indium 

molar fraction (m=0.5) for wells and m=0.4 for barriers, 

as shown in Fig. 1. To obtain accurate values for Fermi 

energy, the energies of quantized levels within the two-

dimensional electron gas (2DEG), potential profiles, 

wave function, and the sheet carrier concentration for 

the 2DEG in InGaN/GaN heterostructures for both  

Schrodinger and Poisson equations must be solved. This 

is achieved by solving Schrodinger’s equation and 

simultaneously taking into account the electrostatic 

potential obtained from Poisson’s equation, as well as 

the image and exchange-correlation potentials using the 

three-point finite difference method [14]. In the 

Schrodinger equation, eFzz is the potential energy 

induced by the polarization charges, Fz  is the electric 

fields in the well, Fw, and barrier, Fb, caused by the 

spontaneous (SP) and piezoelectric (PZ) polarization  

[15-17]. In this work, five parameters, including 

effective mass, energy gap, lattice constants, dielectric 

constant and quantum barrier, and well thickness are 

used which are simultaneously dependent on the 

hydrostatic pressure and temperature as follows: 

1- The basal strain represented as of the form     

( ) ( )( ) ( ), , , , , ,     s e eT P m a a T P m a T P m= −ò  is expressed 

from the lattice of the substrate az and the epilayer

( ) ( ) ( )( )( )0 0, , 1 1 3e refa T P m a m T T P B = + − −
  

β . The lattice 

constants, as a function of temperature, indium molar 

fraction and the hydrostatic pressure [18-20], where 

0 239B GPa=   is the bulk modulus of sapphire,

6 15.56 10GaN Kβ − −= ×  is the thermal expansion 

coefficient at 300ref KT = , ( )0 0.13989 0.03862    a m m= + is 

the equilibrium lattice constant as a function of the 

indium molar fraction [19,20].  

2- Here ℇGaN(T,P) and ℇInGaN(m,T,P) are  the dielectric 

constants of GaN and InGaN while ����������(�, �)  

and LGaN  are  respectively the thickness of  InGaN and 

GaN  as given by [20]: 

                                  

( ) ( )( )4 3

0, 10 exp 10 6.7 10  
GaN

T P T T Pε − −= × − − ×            (1) 

                                    

( ) ( ), , , 6.4   GaN
InGaN m T P T P mε ε= +  ,                         (2) 
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�! = ����������(�, �)= ������(0)#−%&�����������
+ 2&�����������)�*,                              (3)

                               

( ) ( ) ( )11 12, 0 2   GaN GaN
w GaN GaNL L T P L S S P = = − +

 
 .      (4) 

Here,  ( )0InGaNL  and ( )0GaNL  are the InGaN and GaN 

layers thickness without hydrostatic pressure and 

temperature. 11S and 12S are the elastic compliance 

constants.  

3-The band gap energy of InGaN/GaN is as follows [15, 

18, and 20]: 

( ) ( ) ( ) ( )2 2
, 0,0g g eE T P E P P T T Tγ σ α= + + + +  ,       (5) 

where ( )0,0gE stands for the band gap energy of GaN 

or InGaN in the absence of the hydrostatic pressure  at 

temperature 0K. The suggested parameters used in Eq. 

(5) have been taken from Ref 24. In this work the 

parameters α, σ, γ etc. are independent of the electron 

concentration. 

4-In the Schrödinger equation the electron effective 

mass *m  can be written as [21]:  

                                    

( )

( )( )
( )( )

Γ Γ
0

0

* Γ Γ
0

, , 2 / 3
1         

, , , ,

P g S

e g g S

E E P T mm

m P T m E E P T m

+ ∆
= +

+ ∆
 ,      (6) 

where 0m is the free electron mass, Γ
PE is the energy 

linked to the momentum matrix element, 0S∆ is the 

spin-orbit splitting, and ( )Γ , ,gE P T m is the band gap 

variation as a function of the hydrostatic pressure and 

temperature. The whole wave functions and energy 

subbands are calculated along the z-axis using a 6 6×   

k.p method [22,23].  

 The optical absorption expression as a function of the 

photon energy E ′   is calculated as [24,25]: 

-.(/´) = 1ℏ3�
/´45
5�	6788

× 9 : ;<,=>�?@,!
AB,C

�
=,>

|EFG|�%H=I − H>J)�%/´
− /=>)K/=>,                                        (7)

where q and c are respectively the electron charge and 

light vacuum speed; i and j are respectively the 

conduction and valance subband number. 

( ) ( ) ( )
22 2Γ 2 Γij hom ij homL E E E E

 ′ ′− = − +  
π is the 

Lorentzian function, ( )2 2
,

D
r r ijD m W= hπ  is the reduced 

density of the allowed transition of each subband while  
2

ijM represents the transition strengths. These three 

parameters are important in optical absorption. The 

Lorentz function depends on parameters Γhom and ijE , 

where Γhom represents the linewidth of the conduction 

and the valance bands that is related to scattering of all 

carriers (electrons, light, and heavy holes) and phonons 

(see Appendix A) [26,27]. The intraband relaxation 

time 
inτ is obtained from Eqs. (A1) and (A4) as 

( ) ( )in cjk vjkE E= Γ + Γ
 

h τ . Another effective parameter 

regarding the Lorentz function is 
ije h GaN

ij i j g W WbE E E E E eF L= + + − − [28]. That is the 

transition energy of the electron from the conduction 

band to the valance band, where e
iE and h

jE are 

respectively the subband energy of the electron and 

holes in the triangular quantum well while ij
bE is the 

bounding energy of excitons which is dependent on  

external perturbations such as pressure and temperature 

through electron and hole effective masses [28-30]. 

Exciton energies are determined by employing a 

variational procedure [31]. Restricting ourselves to the 

analysis of s-like excitons implies the proposal of a 

normalized trial wavefunction, xΨ , built from the 

product of uncorrelated electron and hole subband states 

together with the inclusion of a hydrogenic-s-like factor 

[32-34]. Then, the exciton energy is obtained by 

minimizing the functional x x x x x xE H= Ψ Ψ Ψ Ψ

where ,x e hh lhH H H H⊥= + + is the exciton Hamiltonian 

that includes the electron one-band Hamiltonian from 

the Schrodinger equation ( )eH , the heavy and light hole 

six-band Hamiltonian from the K.P model ( ),hh lhH , and 

the electron-hole interaction Hamiltonian ( )H⊥ [31-

34]. The binding energy of the s-like exciton resulting 

from the coupling of the electron in the i-th subband and 

the hole in the j-th subband is then given by 
ij e h

i j xbE E E E= + − [31]. The carrier effective mass in the 

i-th sub band can be calculated as follows [35,26] 

                                                       

* * *

1 1 1
1     iw i

i w

w

b

P P
m m m

= − +   ,                                          (8) 

where *
bm and *

wm are the barrier and well carrier 

effective masses,   ( ) ( ) ( )( )    iw iw iw ib ib iw iwP P P P= +ψ ψ ψ  

is the probability of finding  an electron in the quantum 
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well at the level with energy iE .  

( )
2

0
  

GaNd

iw iw iwP dz= ∫ψ ψ  and ( )
0 2

   
InGaN

ib ib ib
d

P dzψ ψ
−

= ∫
respectively represent the wave function of the electron 

in the i-th subband and the wave function penetrating 

towards the quantum barrier. The value of the 

penetrating wave function in the barrier ( )( )ib ibP ψ , is 

the criterion for calculating the quantum confinement 

that is effective on the effective masses of the carriers 

in subbands. The effective masses of light and heavy 

holes are obtained using the 6 6×  k.p method [36]. The 

numerical values of the valance band effective mass 

parameters (Ai) and deformation potentials (Di) are 

taken from reference [21]. By determining the effective 

masses of carriers in quantum wells, through ternary 

formula ( )( )
1

* * *1 1
x xIn Ga N InN GaNm x m x m

−
= − + , the 

effective masses in 
1

*

x xIn Ga Nm
−

 barriers can be obtained 

[37]. By determining the effective mass of the electron 

in the i-th conduction subband and the effective mass of 

the hole in the j-th valance subband, the reduced 

effective mass * 1 1 1
,r ij i jm m m
− − −= +   can be calculated. As a 

result, the reduced density of the allowed transition can 

be calculated where W is the thickness of quantum well. 

The transition matrix element 
2

M   is a measure for the 

strength of stimulated electron transitions in a given 

material. This strength does not depend on the direction 

of the intraband transition; it is the same for emission 

and absorption. However, the transition strength does 

depend on the angle between the electron wave vector 
r
k and the optical field vector E

r
. Any polarization 

direction of the optical field encounters a variety of 

electron 
r
k vectors that needs to be averaged at the given 

photon energy. For bulk zinc blende semiconductors, 

averaging over all possible 
r
k vectors results in an 

isotropic transition matrix element that is equal to the 

momentum matrix element given by ( )0 6b pM m E=  

[25].  pE , is the energy parameter whose numerical 

value is given in Table One.  For quantum well 

structures, the transition matrix element is anisotropic 

while the absorption coefficient depends on the optical 

polarization. Commonly, one distinguishes two 

polarization modes, in which either the electric field 

(TE mode) or the magnetic field (TM mode) lies within 

the quantum well xy-plane (transversal plane). The 

compression strain increases the mean band gap and 

splits the degeneracy of the valence band maximum and 

introduces an anisotropic valence band structure. Note 

that the highest band is now heavy along, k⊥, the strain 

axis (growth direction) with light holes along k∥. 
Consequently, the light beam has TE mode. The 

transition strengths of the TE mode are different for 

heavy (hh) and light holes (lh) Which are calculated as 

[25, 38]  

                                       

( )
2

2 2
3 3cos ( ) 4

TE
e hh e ij bM C M− = + θ ,                           (9) 

                                       

( )
2

2 25 3cos ( ) 4TE
e lh e ij bM C M− = − θ  ,                         (10) 

where cos( )e ijE E′=θ  is the angular factor. 

*
( ) ( )ij i jC x x dx=∫ψ ψ  is the electron-hole overlap integral. 

For the TM mode, the relationships are similar to Eqs. 

(17) and (18), except that the inside of the parentheses 

in Eq. (8) is 
23 3cos ( )e− θ (for heavy holes) and 

21 3cos ( )e+ θ  (for light holes).  It should be noted that 

due to the finiteness of the quantum barriers, the 

orthogonal condition in the overlap integral as well as 

selection rule (i=j) is no longer imposed as all 

symmetry-allowed transition are considered. 

( )1 1 exp
c c ci i f bf E E k T= + −  and 

( )1 1 exp
v v vj j f bf E E k T = + −  

are the Fermi-Dirac 

distribution for electrons in the i-th subband of the 

conduction bands and holes in the j-th subband of 

valance bands, respectively. 
ci

E and 
vj

E are the 

quantized electron and hole energy levels, respectively.  

cf
E and 

vf
E are the electron and hole quasi-Fermi 

levels, respectively. Finally, Adach’s refractive index 

model for 1m mIn Ga N−  is given by [25]:  

6788 =
OP%ℏ⍵ /@⁄ )�� S2 − 2T1 + %ℏ⍵ /@⁄ )U + V.              (11)  

Here
 9.827(1 ) 53.57A m m= − − and 

2.736(1 ) 9.19B m m= − −  are alloy-dependent parameters 

that are true for 0.38m< . The absorption coefficient of 

the quantum barrier for continuous states is as follows 

[42]: 

-W(/´) = X�|X̂ ∙ [\]|�
6788	45
5/´^_`5� ×

a: K4´1 − exp%− 21 √4´⁄ ) Γfgh(4 − 4´)� +Γfgh�
i

ABjkl.mnol.pq r , (12)
                                                       

where Ry and 0a are the exciton Rydberg energy and 

Bohr radius, respectively, 4 = %/´ − /s) ^_t is the 

normalized energy measured from the bandgap, and 
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2

0. 6cv pe p m E=
)

is the momentum-matrix element 

of the bulk quantum barrier. The radiative 

recombination rate is given by [43]: 

      2( )rad rad iU B np n= − .                                       (13) 

Here n and p  are the densities of electrons and holes 

in the conduction and valance bands, respectively, while 

i
n is the intrinsic densities of the carriers. The 

recombination coefficient depends on the absorption 

coefficient is calculated from the following equation 

                                         

11

/2 2

2 3 2

2
( ) B

g

E k T

rad eff
E

i

B n E e E dE
n h c

π
α

∞
−= ∫  .             (14) 

If we calculate 
rad

B in a quantum barrier or well, we 

put their absorption coefficients in Eq. (14). The lower 

limits of the integral, i
n  and effn , are also functions of 

the quantum barrier and well areas. The exponential 

term means that, relative to absorption, the contribution 

from the energy level closer to the band edge is much 

more important.  

3 Results and Discussion  

 In this paper, a numerical model is presented to 

calculate the optical parameters of  InGaN/GaN MQW 

Solar Cells (MQWSC) in order to investigate the effect 

of hydrostatic pressure. The Schrodinger and Poisson 

differential equations are solved by the finite difference 

method. Regarding the self-consistent solution of 

Schrodinger-Poisson equations, the iterative method 

mentioned in Refs. [39] and [40] is used. The 

convergence is obtained when the difference on the 

Fermi level associated with two consecutive iterations 

(/u(�) − /u(���) ) is smaller than 410 eV
− ; also, during 

the calculations, the same grid mesh is used for both 

Poisson and Schrödinger equations. The hole 

eigenstates are calculated along the z-axis using a  6 6×
k.p method. Figure 1 shows the dependence of the 

conduction band offset, the bandgaps of InGaN, and 

GaN on the hydrostatic pressure. The increase in the 

hydrostatic pressure with a range of 0-10Pa leads to 

increased conduction band offset. This is attributed to 

an increase in the bandgap energy of GaN and InGaN 

with increased hydrostatic pressure. This phenomenon 

is related to the correction of the atomic distances of the 

crystal lattice by external pressure, leading to a change 

in polarization. Conduction and valance bands with the 

location of quantum wells (electrons and holes), as well 

as valance bands for light and heavy holes, are shown 

in Fig. 2. The optical absorption equation is 

proportional to the spatial overlap of electron-hole wave 

functions, ,ij PC (P = 0, 5, 10), with 0 corresponding to 

the device under no pressure. The overlap regarding 

different pressures relative to ,0ijC is extracted and 

plotted for the first and second subbands in Fig. 3. As 

can be seen, the increase in the pressure decreases the 

spatial overlap while it increases the depth of quantum 

wells. Increased depth of the wells leads to increasing 

the electron and hole densities while decreasing the 

propagation of the wave functions (electrons and holes). 

As a result, the quantum confinement increases and 

decreases the overlap. The Lorentz function is one of 

the most influential parameters in the optical absorption 

equation in addition to its shape. To examine this 

function in detail, the pressure dependence of the 

conduction and valance linewidths is calculated, as 

illustrated in Figs. 4 and 5, respectively. In particular, 

line widths have a decreasing trend with increasing 

pressure. This is since the spatial separation of wave 

functions decreases with increasing carrier density. In 

the case of scattering carriers with phonons (electron-

phonon, heavy hole-phonon, light hole-phonon), the 

decrease in linewidths is due to decreasing the term 

related to the Fermi function in the second term in the 

square bracket of Eq. (A4). The difference between the 

subband energy and the Fermi energy increases with 

increasing hydrostatic pressure, resulting in the 

decrease in the term related to the Fermi function. A 

reduction in the linewidths of the conduction and the 

valance bands increases the intraband relaxation time 

between the electrons and the light and heavy holes, as 

shown in Fig. 6, due to the inverse relationship of 

intraband relaxation time with linewidths. According to 

Fig. 6, an increase in the pressure by 10 GPa changes 

the relaxation time to a mean of 38fs for heavy holes 

and 40fs for light holes. These changes are taken into 

account in the calculation of the Lorentz function. At 

zero pressure for heavy holes, this value is equal to 0.97 

ps, approximately 0.1ps. In the calculations of other 

studies (mentioned in the introduction) under changes 

such as barrier width, well width, various barrier alloys, 

and external perturbation, this value is considered 

constant and equal to 0.1ps. Transition energy is an 

effective parameter in calculating the Lorentz function, 

which also depends on the exciton binding energy and 

the subbands energy of the quantum wells. To better 

show the changes in these parameters, the second and 

third subbands are illustrated; however, in the 

calculations, symmetric-allowed transitions up to the 

fifth subband are entered. Of course, it should be noted 

that the first and second subbands have the greatest 

effect (due to their high density). The binding energy of 

excitons as a function of hydrostatic pressure is shown 

in Fig. 7. As seen Fig. 7, the decrease in the binding 

energy of excitons dependence with increasing pressure 

can be explained by the band offset and the internal 
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electric fields ( wF and bF ). With increasing pressure, 

the spontaneous and piezoelectric polarization increase, 

increasing the internal electric fields. The electric fields 

separate the electron and holes in the opposite direction, 

which reduces the overlap of electron and hole wave 

functions (Fig. 3), thus decreasing the binding energy of 

excitons. As the pressure increases, the band offset 

increases (Fig. 1), which expands the distance between 

the electrons and holes, thus reducing the Coulomb 

interaction. It also increases the depth of quantum wells, 

electron density, and quantum confinement, thus 

ultimately reducing the exciton binding energy. By 

determining the energy of the subbands related to the 

carriers and the binding energy of excitons, the 

transition energy of the carriers can be calculated, as 

shown in Fig. 8. According to the figure, with 

increasing pressure, the transition energies increase. By 

determining the transition energies and the linewidths 

of the carrier, the Lorentz function for light and heavy 

holes of all symmetry-allowed transitions can be 

obtained. For example, the Lorentz function of the first 

subband transition corresponding to light and heavy 

holes is plotted in Fig. 9. According to Fig. 9, with 

increasing pressure, the height of the Lorentz function 

increases while its width decreases. They shift to higher 

energies as the pressure increases. As the pressure 

increases to 10, the height of the Lorentz function 

increases to 27eV-1 for heavy holes and 16eV-1 for light 

holes. This increase, along with the decrease in width, 

is related to the decrease in linewidths, as illustrated in 

Figs. 4 and 5. The Lorentz function transfer to high 

energies is associated with the increase of transition 

energies with increasing pressure. By determining the 

Lorentz and the overlap function, as well as other 

parameters, the well absorption coefficient in terms of 

wavelength is plotted in Fig. 10. In Fig. 10, the well 

absorption coefficient of other electronic transitions is 

also considered. The pressure effect on the absorption 

coefficient of quantum wells is illustrated. According to 

Fig. 10, the absorption coefficient decreases by 

increasing pressure, which is related to the increase in 

the energy gap. Light holes have more energy gaps than 

heavy holes; thus, they have less absorption. 

Consequently, the smaller peak corresponds to a light 

hole. 

 Table 1. Suggested parameters for GaN and InN 

 

 The absorption coefficient of a bulk quantum barrier in 

terms of wavelength at different pressures is shown in 

the inset. In this figure, there are two peaks but very 

close to each other, which is due to the proximity of the 

energy levels of the light and heavy holes at the band 

adage  v∥ (unlike GaAs degenerated in v∥). Also, the 

absorption coefficient decreases with increasing 

pressure. The reason is the same as for the decrease in 

the absorption coefficient of the quantum well and is 

related to the increase in the energy gap.  By 

determining the absorption coefficients, the 

recombination coefficients can be calculated, as 

observed in Fig. 11. In Fig. 11, the recombination 

coefficients according to Eq. (14) are dependent on the 

absorption coefficients. Therefore, with increasing 

pressure, the recombination coefficients decrease as the 

adsorption coefficients decrease. The main reason for 

this decrease is related to the increase in the depth of 

quantum wells and quantum confinement. As the 

pressure increases to 10 Gpa, the recombination 

coefficients decrease to 10 3 10.5 10 cm s −×  for quantum 

wells (Bw) and 10 3 10.4 10 cm s −×  for quantum barriers 

(Bb). Finally, the radiative recombination rate in terms 

of the distance at different pressures is illustrated in Fig. 

12. In Fig. 12, the radiative recombination rate 

decreases with increasing pressure, which is also related 

to the decreasing changes of the recombination 

coefficient with increasing pressure. As the pressure 

increases by an order of magnitude, the radiative 

recombination rate decreases by an average of 
25 3 10.95 10 cm s− −× . 

 

 

 

Parameters(unit) GaN InN        References wxy(z{) 14.0 14.5 [21] w|y(}~ = }�x�)(z{) 3.42 0.7 [21] 

��}(z{) 0.014 -0.001 [21] �%�z{. �x���) 31.8 16 [19] �%�z{. �x���) -0.23 -0.02 [19] ���%�}���x�) 0.55 1.15 [16] ���%�}���x�) 0.19 0.46 [16] �%�}��z{. ~��) 0.909 0.245 [21] �z(~) 830 624 [21] �i 5.39 6.7 [44] 
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Figure 1. Bandgaps̓ energy of InGaN, GaN, and conduction band 

offset of  InGaN/GaN MQW solar cell as a function of pressure. 
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Figure 2. The conduction (C.B) and valance(V.B) bands energy of  

InGaN/GaN MQW solar cell as a function of the distance under 

different hydrostatic pressure. 
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Figure 5. Valance band linewidths as a function of hydrostatic 

pressure at subband adage v∥ for InGaN/GaN MQW solar cell. In 

which all the scattering of holes with other holes (hh-hh, lh-lh), 

phonons (lh-ph, hh-ph) and with other electrons (e-hh, e-lh) are

considered. 



Yahyazadeh & Hashempour/ Journal of Interfaces, Thin films, and Low dimensional systems 

 

318 

 

0 2 4 6 8 10

100

120

140

160

180

200

220
τ i

n
 (
fs

)

P(GPa)

 hh

 lh

Figure 6. Intraband relaxation time as a function of hydrostatic 

pressure at subband adage  v∥ for InGaN/GaN MQW solar cell. In 

which heavy hole (solid line) and light hole (dashed line) are 

considered. 
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Figure 11. Recombination coefficients versus different hydrostatic 

pressures for InGaN/GaN MQW solar cell. 
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cell as a function of the distance under different hydrostatic 

pressure. 

4 Conclusions  
 

In this study, we examined the optical absorption 

spectrum, absorption coefficient, and radiative 

recombination rate of InGaN/GaN multi-quantum-well 

solar cells (MQWSC) under hydrostatic pressure. The 

results showed that increasing the hydrostatic pressure 

in the range of 0-10 GPa would lead to an increase in (I) 

the intraband relaxation time up to 38fs for heavy holes 

and 40fs for light holes and (II) the height of the Lorentz 

function to 27eV-1 for heavy holes and 17eV-1 for light 

holes, as well as a reduction in (III) the overlap of 

normalized wave functions and excitonic binding 

energy  (IV) the recombination coefficients to 
10 3 10.5 10 cm s

−×  for quantum wells and 
10 3 10.4 10 cm s −× for quantum barriers and (V) the 

radiative recombination rate up to 25 3 19.5 10 cm s
− −× . 

Therefore, it can be concluded that all effective 

transitions of quantum wells should be considered for 

an accurate study of radiative recombination rate. Also, 

the absorption coefficient of a bulk quantum barrier is 

effective in obtaining an accurate radiative 

recombination rate.  
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Appendix A: Intraband Relaxation Time 

 The linewidth due to the carrier-carrier scattering is 

obtained from the perturbation expansion of one-

particle Green’s functions. The linewidth for carrier-

carrier scattering is given by: 

                                ��>�∥\�\
= 1 9 9 9����(v∥v´∥, FF´, GG´)�

=,>
×

�´,��´�\,]
�%/

+ /�´=�∥−/�>´�∥ − /�´=´�´∥)× #H�%/�>´�∥)H�´%/�´=´�´∥ )�1 − H�´%/�´=�∥)�+ �1 − H�%/�>´�´∥)��1− H�´%/�´=�´∥)�H�´%/�´=�∥ )*,                                                (P1)
where n refers to conduction (n = c) or valence (n = v) 

bands, i , ′i , j , and ′j are the subband numbers of the 

QW structure, and ( )nf E is the Fermi distribution 

function. The interaction matrix element nmV in a two-

dimensional QW is given by 

���(v∥v´∥, FF´, GG´)
= X�

24���P �(v∥ − v´∥, [´∥ − [∥)
T�v∥ − v´� + ���

× : : ��>´∗ (��)��>(��)��=´∗ (��)��´=´(��)
× exp �−|�� − ��|T�v∥ − v´�� + ���� K��K��,           (P2)
where the z-axis is perpendicular to the well interface. 

A is the interface area of the sample while the δ notation 

represents momentum conservation within a plane 

parallel to the well interface. ( )1nj zφ  is the wave 

function of a carrier which is obtained by the self-

consistent solution of the Schrodinger-Poisson equation 
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for electrons and k.p method for holes. sλ  is the inverse 

screening length and its relation is as follows [29] 

                                             

��� = X�
1�ℏ�4��� 9 �
\>H\%/\>)T
\>/\>>+ 
]>H]%/]>)T
]>/]> .                  (P3) 

Here cjm and vjm are the effective masses of electrons 

and holes in the conduction and valance bands, which 

will be explained in the following. For carrier-

longitudinal optical (LO) phonon scattering, the 

linewidth broadening is obtained by taking the 

imaginary part of the one-phonon self-energy [30] 

��>�∥
\��¡ = 1 9 9���(v∥v´∥, GG´)�� ×

>´�´∥
�6¢ + 1

− H�%/�>´�∥)��%/�>´�´∥ − / + ℏ£¤¥)+ �6¢ − H�%/�>´�´∥)��%/�>´�´∥ − /+ ℏ£¤¥),                                              (P4) 

 

where 191.13LO meV
−=hω is the energy of the LO 

phonon and qn  is the phonon number per mode, given 

by 6¢ = 1 ¦exp(§ℏ£¤¥) − 1¨⁄ .   The matrix element 

nP  for carrier-LO phonon scattering in a two-

dimensional QW is given by 

���(v∥v´∥, GG´)��
= 9 X�ℏ£¤¥2�¢

© 14i − 14ª 3�
(3� + ���)

× «: ��>∗ (�)��>(�)exp(−F3¬)K�«� ,                            (P5) 

 

where ε∞ is the optical dielectric constants, 
z

q  is the 

phonon wave vector perpendicular to the well interface 

and V is the volume of the system. The intraband 

relaxation time 
inτ   is obtained from Eqs. (A1) and (A4) 

as ( ) ( )in cjk vjkE E= Γ + Γ
 

h τ . 
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