Experimental investigation of the thermal conductivity of hybrid nanofluids using Ag/ MWCNT nanocomposite particles

Document Type : Original Article

Authors

1 Department of Engineering Sciences and Physics, Buein Zahra Technical University, Buein Zahra 3451866391, Iran.

2 Research and Development department, Nano Gostar Kimiagaran Arvand knowledge based company, Mashhad, Khorasan, Iran.

3 Department of Chemistry, Faculty of Science, Ilam University 69315-516, Iran.

Abstract

he presence of nanoparticles enhances heat transfer in heat exchangers. The degree of enhancement depends on the type, size, and shape of nanoparticles, as well as temperature conditions. Therefore, this study aims to improve thermal conductivity in a hybrid nanofluid by incorporating a nanocomposite. Due to their high thermal conductivity, spherical-shaped silver nanoparticles are suitable for synthesizing composites with cylindrical-shaped functionalized multi-wall carbon nanotubes.  The characteristics of the synthesized nanocomposite were investigated via UV-Vis spectrophotometer, SEM, and TEM analyses. Also, the effects of Ag concentrations and temperature on thermal conductivity were investigated. The thermal conductivity can be enhanced by 15%, increasing Ag concentration from 0.05-0.5 wt.% and temperature in the 20-45 C range. The stability of the synthesized MWCNT/Ag nanofluid was evaluated after more than 90 days. The results indicated that the nanofluids with lower concentrations of Ag nanoparticles preserved their stability without using a surfactant.  

Keywords

Main Subjects

Article Title [Persian]

رسانندگی حرارتی نانوسیالات هیبریدی با استفاده از نانو ذرات نقره و نانو لوله های کربنی چند دیواره

Authors [Persian]

  • سارا حشمتیان 1
  • هومن بخشی 2
  • توان کیخاونی 3

1 گروه فیزیک و علوم مهندسی، دانشگاه صنعتی بوئین زهرا، بوئین زهرا ۳۴۵۱۸۶۶۳۹۱، ایران.

2 گروه تحقیق و توسعه، شرکت نانو گستر کیمیاگران آروند، خراسان، ایران.

3 گروه شیمی، دانشکده علوم، دانشگاه ایلام ۵۱۶-۶۹۳۱۵، ایران.

Abstract [Persian]

وجود نانوذرات باعث افزایش انتقال حرارت در مبدل های حرارتی می شود. میزان افزایش انتقال حرارت به نوع، اندازه و شکل نانوذرات و همچنین شرایط دمایی بستگی دارد. بنابراین، در این مطالعه، بهبود هدایت حرارتی در یک نانوسیال هیبریدی با استفاده از ترکیب یک نانوکامپوزیت انجام می‌شود. نانوذرات نقره کروی به دلیل رسانایی حرارتی بالا گزینه مناسبی برای سنتز کامپوزیت با نانولوله کربنی چند جداره استوانه ای شکل هستند. ویژگی‌های نانوکامپوزیت سنتز شده از طریق اسپکتروفتومتر UV-Vis، SEM و آنالیز TEM مورد بررسی قرار گرفت. همچنین اثرات غلظت نقره و دما بر هدایت حرارتی مورد بررسی قرار گرفت. هدایت حرارتی را می توان با افزایش غلظت نقره از 0.05-0.5 درصد وزنی و دما در محدوده 20-45 درجه سانتیگراد 15٪ افزایش داد. پایداری نانوسیال MWCNT/Ag سنتز شده پس از بیش از 90 روز مورد ارزیابی قرار گرفت. نتایج نشان داد که نانوسیالات با غلظت های پایین تر نانوذرات نقره، پایداری خود را بدون استفاده از سورفکتانت حفظ کردند.

Keywords [Persian]

  • نانوسیالات هیبریدی
  • ذرات نانوکامپوزیت
  • نانولوله کربنی چند دیواره
  • هدایت حرارتی
[1] D. Dhinesh Kumar, A. Valan Arasu, “A comprehensive review of preparation, characterization, properties and stability of hybrid nanofluids, Renewable and Sustainable.” Energy Reviews, 81 (2018) 1669.
[2] N. Gupta, S. Mital Gupta, S.K Sharma, “Preparation of stable variation/COOH-MWCNT hybrid
nanofluid.” Materials today: Proceedings, 36 (2021) 649-656.
[3] S. P. Louis, S. Ushak, Y. Milian, M. Nemś, A. Nemś, “Application of Nanofluids in Improving the Performance of Double-Pipe Heat Exchangers-A Critical Review.” Materials (Basel), 15 (2022) 6879.
[4] T. Rasheed, T. Hussain, M. Tuoqeer Anwar, J. Ali, K. Rizwan, M. Bilal, F. H. Alshammari, N. Alwadai, A. S. Almuslem, “Hybrid Nanofluids as Renewable and Sustainable Colloidal Suspensions for Potential Photovoltaic/Thermal and Solar Energy Applications.” Frontiers in Chemistry, 27 (2021) 1.
[5] B. Singh, Sh. Sood, “Hybrid nanofluids preparation, thermo-physical properties, and applications: A Review.” Hybrid Advances, 6 (2024) 100192.
[6] A. HaiAlami, M. Ramadan, M. Tawalbeh, S. Haridy, Sh. AlAbdulla, H. Aljaghou, M. Ayoub, A. Alashkar, M. A. Abdelkareem, A. Olabi, “critical insight on nanofuids for heat transfer enhancement.” Scientific Reports, 13 (2023) 15303.
[7] R. Pourrajab, A. Noghrehabadi, M. Behbahani, E. Hajidavalloo, “An efficient enhancement in thermal conductivity of water-based hybrid nanofluids containing MWCNTs-COOH and Ag nanoparticles: experimental study.” Journal of Thermal Analysis and Calorimetry, 143 (2020) 3331.
[8]M. Farbod, A. Ahangarpour, “Improved thermal conductivity of Ag decorated carbon nanotubes water based nanofluids.” Physics Letters A, 380 (2016) 4044.
[9] B. Munkhbayar, M.R. Tanshen, J. Jeoun, H. Chung, H. Jeong, “Surfactant free dispersion of silver nanoparticles into MWCNT-aqueous nanofuids prepared by one-step technique and their thermal characteristics.” Ceramics International, 39 (2013) 6415.
[10] J. Dai, Y. Zhai, Zh. Li, H. Wang, “Mechanism of enhanced thermal conductivity of hybrid nanofluids by adjusting the mixing ratio of nanoparticles.” Journal of Molecular Liquids, 400 (2024) 124518.
[11] Kh. Selvarajoo, V. V. Wanatasanappan, N. Y. Luon, “Experimental measurement of thermal conductivity and viscosity of Al2O3-GO (80:20) hybrid and mono nanofluids: A new correlation.” Diamond and Related Materials, 144 (2024) 111018.
[12] Sh. Sarkar, P. Pal, N. Kumar Ghosh, “Enhancing the thermal conductivity and viscosity of ethylene glycol-based single-walled carbon nanotube (SWCNT) nanofluid: An investigation utilizing equilibrium molecular dynamics simulation.”
Chemical Thermodynamics and Thermal Analysis, 16 (2024) 100142.
[13] A. Koroushavi, Z.H. Allah Jashoei, S. Abbasi, “Synthesis of MWCNT@Ag and application of it for investigation of the nanofluids viscosity variation based on the 2-level factorial design.” Geosystem Engineering, 23 (2020) 112.
[14] M. Hemmat Esfe, S. Alidoust, D. Toghraie,” Comparison of thermal conductivity of water-based nanofluids with various combinations of MWCNT, CuO, and SiO2 nanoparticles for using in heating systems.” Case Studies in Thermal Engineering, 42 (2023) 102683.
[15] A. N. Atikah, A. Fazlina, R. Kandasamy, “Effect of nanoparticle shapes on improving heat transfer in hybrid nanofluids containing Ag-SWCNTs with etylene glycol, engine oil and water”, AIP Conference Proceedings 13 September 2024; 3150
(1): 030001.
[16] N. Ahmed Bin-Abdun, Z. M. Razlan, S. A. Bakar, C. H. Voon, Z. Ibrahim, W. K. Wan, M. J. M. Ridzuan, “Heat transfer improvement in simulated small battery compartment using metal oxide (CuO)/deionized water nanofluid.” Heat Mass Transfer, 56 (2020) 399.
[17] D. P. Kshirsagar, M.A. Venkatesh, “A review on hybrid nanofluids for engineering applications.” Materials Today Proceedings, 44 (2021) 744.
[18] A. Asadi, M. Asadi, A. Rezaniakolaei, L. A. Rosendahl, M. Afrand, S. Wongwises, “Heat transfer efficiency of Al2O3-MWCNT/thermal oil hybrid nanofluid as a cooling fluid in thermal and energy management applications: An experimental
and theoretical investigation.” International Journal of Heat and Mass Transfer, 117 (2018) 474.
[19] A. Asadi, I.M. Alarifi, V. Ali, HM. Nguyen, “An experimental investigation on the effects of ultrasonication time on stability and thermal conductivity of MWCNT-water nanofluid: Finding the optimum ultrasonication time.” Ultrasonics
Sonochemistry, 58 (2019) 104639.
[20] IW. Almanassra, AD. Manasrah, UA. Al-Mubaiyedh, T. Al-Ansari, ZO. Malaibari, MA. Atieh, “An experimental study on stability and thermal conductivity of water/CNTs nanofluids using different surfactants: a comparison study.” Journal of Molecular Liquids, 304 (2020) 111025.
[21] K. Palanisamy, P. Kumar, “Experimental investigation on convective heat transfer and pressure drop of cone helically coiled tube heat exchanger using carbon nanotubes/water nanofluids.” Heliyon, 5 (2019) e01705.
[22] L. Yang, J. Huang, W. Ji, M. Mao, “Investigations of a new combined application of nanofluids in heat recovery and air purification.” Powder Technology, 360 (2020) 956.
[23] D. Li, W. Fang, Y. Feng, Q. Geng, M. Song, “Stability properties of water-based gold and silver nanofluids stabilized by cationic gemini surfactants.” Journal of the Taiwan Institute of Chemical Engineers, 97 (2019) 458.