The effect of the geometrical parameters and composing materials type on the bandgap width of two-dimensional phononic crystals

Document Type : Original Article

Authors

1 Department of Physics, Faculty of Science, Qom University of Technology, Qom, Iran.

2 Department of Electrical and Computer Engineering, Qom University of Technology, Qom, Iran

Abstract

In this article, the bandgap of the two-dimensional phononic crystal with some holes in a square plane was studied using the finite element method in the Comsol software. The holes are made of both some solids and liquids simultaneously in our phononic crystals that is less studied so far. We examined the fixed lattice constant while the cavity radius changes and vice versa. We found a larger bandgaps width when the cavity was made of nickel metal while the surrounding media is water. We; observed that the system with higher sound speed possesses more significant band gap.At higher temperatures, we will have a higher sound speed, and thus, a higher bandgap width. we have a smaller bandgap when the holes are covered by metal. The main aim of the manuscript was to find an optimum structure that have a phononic crystal with largest passible phononic band gap for filtering properties applications. In this way, we have considered the effect of different parameters such as lattice constant, composing materials, phononic crystal geometry, temperature on the phononic bandgap width.

Keywords

Main Subjects

Article Title [Persian]

اثر پارامترهای هندسی و مواد تشکیل دهنده روی عرض گاف نواری بلورهای فونونی دو بعدی

Authors [Persian]

  • مهدی سلیمانی 1
  • پریسا محمودی 2

1 دانشکده فیزیک، دانشگاه صنعتی قم، قم، ایران.

2 دانشکده مهندسی برق و کامپیوتر، دانشگاه صنعتی قم، قم، ایران.

Abstract [Persian]

در این مقاله، گاف نواری بلور فوتونی دو بعدی با چند سوراخ در صفحه مربعی با استفاده از روش اجزا محدود در نرم افزار کامسول مورد بررسی قرار گرفت. حفره ها از چند جامد و مایع در بلورهای صوتی ساخته شده اند که تاکنون کمتر مورد مطالعه قرار گرفته است. ما اثر ثابت شبکه ثابت را در حالی که شعاع حفره تغییر می‌کند و بالعکس بررسی کردیم. هنگامی که حفره از فلز نیکل ساخته شده بود، در حالی که محیط اطراف آن آب بود، عرض باند بزرگتری پیدا کردیم. مشاهده شد که سیستم با سرعت صوت بالاتر دارای شکاف باند بزرگتری است. در دماهای بالاتر، سرعت صوت بالاتر و در نتیجه پهنای باند بیشتری خواهیم داشت. هنگامی که سوراخ ها با فلز پر می شوند، گاف نواری کوچکتری داریم. هدف اصلی این مقاله یافتن ساختاری بهینه ای بود که دارای گاف نواری بزرگتری برای کاربردهای فیلتری باشد. به این ترتیب تأثیر پارامترهای مختلفی مانند ثابت شبکه، مواد تشکیل دهنده، هندسه بلور فونونی و دما بر روی پهنای کاف فونونی بررسی شده است.

Keywords [Persian]

  • بلور فونونی
  • گاف نواری
  • ثابت شبکه
[1] M. M. Sigalas, "Defect states of acoustic waves in a two-dimensional lattice of solid cylinders." Journal of Applied Physics, 84 (1998) 3026.
[2] S. Yang, J. H. Page, Z. Liu, M. L. Cowan, C. T. Chan, P. Sheng "Focusing of sound in a 3D phononic crystal." Physical review letters, 93 (2004) 024301.
[3] E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics." Physical review letters, 58 (1987) 2059.
[4] C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, "Subwavelength imaging in photonic crystals." Physical Review B, 68 (2003) 045115.
[5] J. O. Vasseur, P A Deymier, B. Chenni, B. Djafari-Rouhani, L. Dobrzynski, D. Prevost "Experimental and theoretical evidence for the existence of absolute acoustic band gaps in two dimensional solid phononic crystals." Physical
Review Letters, 86 (2001) 3012.
[6] F. Cervera, L. Sanchis, J. V. Sánchez-Pérez, R. Martinez-Sala, C. Rubio, F. Meseguer, C. López, D. Caballero, J. Sánchez-Dehesa "Refractive acoustic devices for airborne sound." physical review letters, 88 (2001) 023902.
[7] N. Garcia, M. Nieto-Vesperinas, E. V. Ponizovskaya, and M. Torres. "Theory for tailoring sonic devices: Diffraction dominates over- refraction." Physical Review E, 67 (2003) 046606.
[8] M. Torres, F. R. Montero de Espinosa, and J. L.Aragon. "Ultrasonic wedges for elastic wave bending and splitting without requiring a full band gap." Physical Review Letters, 86 (2001) 4282.
[9] Y. Suxia, J. H. Page, Z. Liu, M. L. Cowan, C. T. Chan, and P. Sheng. "Focusing of sound in a 3D phononic crystal." Physical review letters, 93 (2004) 024301.
[10] Drumheller, S. Douglas Introduction to wave propagation in nonlinear fluids and solids. Cambridge; University Press, 1998.
[11] Gupta, C. Bikash, and Z. Ye "Theoretical analysis of the focusing of acoustic waves by two-dimensional sonic crystals." Physical Review E, 67 (2003) 03660.
[12] D. Espinosa, F.R. Montero, E. Jimenez, and M. Torres "Ultrasonic band gap in a periodic two dimensional
composite." Physical Review Letters, 80 (1998) 1208.
[13] W. M. Robertson, and J. F. Rudy "Measurement of acoustic stop bands in two-dimensional periodic
scattering arrays." The Journal of the Acoustical Society of America 104 (1998) 694.
[14] M. Toyokatsu. "Sonic crystals and sonic waveguides." Measurement Science andTe chnology, 16 (2005) R47.
[15] Y. Suxia, J. H. Page, Z. Liu, M. L. Cowan, C. T. Chan, and P. Sheng. "Ultrasound tunneling through 3D phononic crystals." Physical review letters, 88 (2002) 104301.
[16] O. Jerome, A-C. Hladky-Hennion, B. Djafari- Rouhani, F. Duval, B. Dubus, Y. Pennec, and P. A. Deymier. "Waveguiding in two-dimensionalpiezoele ctric phononic crystal plates." Journal of applied physics, 101 (2007) 114904.
[17] A. Khelif, A. Choujaa, S. Benchabane, B. Djafari- Rouhaniand, V. Laude, "Guiding and bending of acoustic waves in highly confined phononic crystal waveguides;" Applied physics letters, 84 (2004) 4400.
[18] M. Torres, F. R. Montero de Espinosa, and J. L. Aragon. "Ultrasonic wedges for elastic wave bending and splitting without requiring a full band gap." Physical Review Letters, 86 (2001) 4282.
[19] A. Khelif, A. Choujaa, B. Djafari-Rouhani, M. Wilm, S. Ballandras, and V. Laude " Trapping and guiding of acoustic waves by defect modes in a full-band-gap ultrasonic crystal" Physical Review B, 68 (2003) 214301.
[20] F. Van Der Biest, A. Sukhovich, A. Tourin, J. H. Page, B. A.Van Tiggelen, Z. Liu, and M. Fink,"Resonant tunneling of acoustic waves througha double barrier consisting of two phononic crystals." Europhysics Letters, 71 (2005) 63.
[21] S. Jinjie, S. Chin, S. Lin, and T. Jun Huang; "Wideband acoustic collimating by phononic crystal
composites." Applied Physics Letters, 92 (2008)111901.
[22] J. O. Vasseur, P. A. Deymier, B. Chenni, B. Djafari-Rouhani, L. Dobrzynski, and D. Prevost,
"Experimental and theoretical evidence for the existence of absolute acoustic band gaps in two dimensional
solid phononic crystals." Physical Review Letters, 86 (2001) 3012.
[23] F. L. Hsiao, A. Khelif, H. Moubchir, A. Choujaa, C. C. Chen, and V. Laude, "Complete band gaps
and deaf bands of triangular and honeycomb water-steel phononic crystals." Journal of
applied physics, 101 (2007) 044903.
[24] P. A. Deymier, B. Merheb, J. O. Vasseur, A. Sukhovichand, J. H. Page, "Focusing of acoustic waves by flat lenses made from negatively refracting two-dimensional photonic crystals." Revista mexicana de física, 54 (2008)
74.
[25] M. B. Assouar, B. Vincent, H. Moubchir, O. Elmazria, A. Khelif, and V. Laude, "Domains Inversion in LiNbO3 Using Electron Beam Irradiation for Phononic Crystals." 15th IEEE international symposium on the applications of
ferroelectrics. IEEE, 2006.
[26] Z. Xiao-Zhou, Y. S. Wang, and C. Zhang; "Essentialrole of material parameters on the band gaps of phononic crystals." IEEE; Ultrasonics Symposium. IEEE, 2008
[27] I. A. Veres, D. M. Profunser, O. B. Wright, O. Matsuda, and U. Lang, "Real-time simulations and experiments on ultrahigh frequency surface waves in micro-structured phononic crystals." IEEE International Ultrasonics
Symposium. IEEE, 2009
[28] S. Mohammadi, A. A. Eftekhar, and A. Adibi. "Support loss-free micro/nano-mechanical resonators using phononic crystal slab waveguides;" IEEE International Frequency Control Symposium. IEEE, 2010
[29] H. Y. Zhao, C. F. He, B. Wu, and Y. S. Wang, "Experimental realization of lower-frequency complete band gaps in 2D phononic crystals." Symposium on Piezoelectricity, Acoustic Waves and Device Applications (SPADA). IEEE, 2011.
[30] D. W. Branch, P. J. Clews, J. Nguyen, B. Kim, and P. T. Rakich, "Dispersion engineering in aluminum nitride phononic crystal plates." IEEE International Ultrasonics Symposium (IUS) IEEE, 2013.
[31] Y. Y. Chen, Y. R. Lin, T. T. Wu, and S. Y. Pao, "Anchor loss reduction of quartz resonators utilizing phononic crystals." IEEE International Ultrasonics Symposium (IUS). IEEE, 2015.
[32] Y. Deng, and Y. Jing. "Zone folding induced topological insulators in phononic crystals." IEEE International Ultrasonics Symposium (IUS). IEEE, 2017.
[33] M. Wajih Ullah Siddiqi, J. E-Y. Lee; "AlN-on-Si MEMS resonator bounded by wide acoustic bandgap two-dimensional phononic crystal anchors." IEEE Micro Electro Mechanical Systems (MEMS). IEEE, 2018.
[34] F. Bao, J. Bao, X. Li, X. Zhou, Y. Song, and X. Zhang, "Reflective strategy based on tetherintegrated phononic crystals for 10 MHz MEMS resonator." Joint Conference of the IEEE International Frequency Control Symposium and European Frequency and Time Forum (EFTF/IFC). IEEE, 2019.
[35] J. Gao, X. Y. Zou, J. C. Cheng, and B. Li, "Band gaps of lower-order Lamb wave in a thin plate with one-dimensional phononic crystal layer: Effect of the substrate" Applied Physics Letters, 92 (2008) 023510.
[36] Y. Yao, F. Wu, X. Zhang, and Z. Hou, "Lamb wave band gaps in locally resonant phononic crystal strip waveguides." Physics Letters A, 376 (2012) 579.
[37] J. J. Chen, K. W. Zhang, J. Gao, and J. C. Cheng, "Stopbands for lower-order Lamb waves in onedimensional
composite thin plates." Physical Review B, 73(2006) 094307.
[38] V. Zega, C. Gazzola, A. Buffoli, M. Conti, L. G. Falorni, G. Langfelder, A. Frangi "A defectbased MEMS phononic crystal slab waveguide." 35th IEEE International Conference on Micro Electro Mechanical Systems Conference (MEMS) 2022 Jan 9 (pp. 176-179).
[39] K. Nishimiya, T. Ohbuchi, N. Wakatsuki, K. Mizutani, and K. Yamamoto. "Visualization of negative refraction in phononic crystal using pulsed light source." IEEE International Ultrasonics Symposium, pp. 1545-1547. IEEE, 2009.
[40] F. Lucklum, and M. J. Vellekoop "Realization of complex 3-D phononic crystals with wide complete acoustic band gaps." IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 63 (2016) 796.
[41] M. Pyung Sik, K. Kim, and Y. Young Kim. "Remote beam steering with phononic crystalbased elastic waveguides;" IEEE International Ultrasonics Symposium (IUS). IEEE, 2016 [42] L. Astolfi, R. L. Watson, D. A. Hutchins, P. J. Thomas, M. Askari, A. T. Clare, L.,Nie, S. Freear, S. Laureti, and M. Ricci, "Negative refraction in conventional and additively manufactured phononic crystals." IEEE International Ultrasonics Symposium (IUS). IEEE, 2019.
[43] T. Vasileiadis, J. Varghese, V. Babacic, J. Gomis- Bresco, D. Navarro Urrios, and B. Graczykowski, "Progress and perspectives on phononic crystals." Journal of Applied Physics, 129 (2021) 160901.