[1] Y. Shang, M. K. Hasan, G. J. Ahammed, M. Li, H. Yin, and J. Zhou, “Applications of nanotechnology in plant growth and crop protection: a review.” Molecules, 24 (2019) 2558.
[2] R. K. Ibrahim, M. Hayyan, M. A. AlSaadi, A. Hayyan, and S. Ibrahim, “Environmental application of nanotechnology: air, soil, and water.” Environmental Science and Pollution Research, 23 (2016) 13754-13788.
[3] M. S. Chavali, and M. P. Nikolova, “Metal oxide nanoparticles and their applications in nanotechnology.” SN Applied Sciences, 1 (2019) 607.
[4] L. Liu, X. B. Luo, L. Ding, and S. L. Luo, “Application of nanotechnology in the removal of heavy metal from water.” Nanomaterials for the Removal of Pollutants and Resource Reutilization, (2019) 83.
[5] S. Malik, K. Muhammad, and Y. Waheed, “Nanotechnology: A revolution in modern industry.” Molecules, 2 (2023) 661.
[6] S. Malik, K. Muhammad, and Y. Waheed, “Emerging applications of nanotechnology in healthcare and medicine.” Molecules, 18 (2023) 6624.
[7] V. P. Chavda, D. Acharya, V. Hala, S. Daware, and L. K. Vora, “Sunscreens: A comprehensive review with the application of nanotechnology.” Journal of Drug Delivery Science and Technology, 86 (2023)104720.
[8] Y. T. Youns, A. K. Manshad, and J. A. Ali, “Sustainable aspects behind the application of nanotechnology in CO2 sequestration.” Fuel, 349 (2023) 128680.
[9] M. T. Ahmed, M. S. Ali, T. Ahamed, S. Suraiya, and M. Haq, “Exploring the aspects of the application of nanotechnology system in aquaculture: a systematic review.” Aquaculture International, 32 (2024) 4177.
[10] N. Mohammed, S. H. Nawar, M. S. Etawy, G. E. Nassar, and A. G. Hassabo, “Nanotechnology and its applications in industry and product design.” Journal of Textiles, Coloration and Polymer Science, 2 (2024) 273.
[11] R. Bansal, H. C. Barshilia, and K. K. Pandey, “Nanotechnology in wood science: Innovations and applications.” International Journal of Biological Macromolecules, 262 (2024) 130025.
[12] M. Yilmaz, N. Canpolat, and S. Aydoğan, “Surface plasmon resonance effects of Ag@ ZnO core–shell nanostructure in UV and visible light for photodiode applications.” Journal of the American Ceramic Society, 5 (2024) 3390.
[13] O. S. Ivanova, C. R. Lin, I. S. Edelman, E. S. Svetlitsky, A. E. Sokolov, S. M. Zharkov, A. L. Sukhachev, S. A. Vorobyev, D. A. Petrov, and E. S. Lin, “Adsorption properties and catalytic activity of Fe3O4-Ag nanostructures.” Applied Surface Science,
665 (2024) 160236.
[14] S. Rani, and A. K. Shukla, “Investigation of hydrophobic bimetallic cost-effective Cu-Ag nanostructures as SERS sensor.” Plasmonics, 2 (2024) 985.
[15] H. K. Lin, Y. M. Ding, W. I. Yen, C. H. Chen, and J. R. Lee, “Enhanced SERS performance of Ag nanoparticles using hybrid dewetting process for melamine detection.” Optics & Laser Technology, 181 (2025) 111673.
[16] S. Vijayaram, H. Razafindralambo, Y. Z. Sun, S. Vasantharaj, H. Ghafarifarsani, S. H. Hoseinifar, and M. Raeeszadeh, “Applications of green synthesized metal nanoparticles—a review.” Biological Trace Element Research, 1 (2024) 360.
[17] F. Arshad, G. A. Naikoo, I. U. Hassan, S. R. Chava, M. El-Tanani, A. A. Aljabali, and M. M. Tambuwala, “Bioinspired and green synthesis of silver nanoparticles for medical applications: a green perspective.” Applied Biochemistry and
Biotechnology, 6 (2024) 3636.
[18] O. Pryshchepa, P. Pomastowski, and B. Buszewski, “Silver nanoparticles: Synthesis, investigation techniques, and properties.” Advances in Colloid and Interface Science, 284 (2020) 102246.
[19] L. Xu, Y. Y. Wang, J. Huang, C. Y. Chen, Z. X. Wang, and H. Xie, “Silver nanoparticles: Synthesis, medical applications and biosafety.” Theranostics, 20 (2020) 8996.
[20] Y. Hattori, S. Mukasa, H. Toyota, T. Inoue, and S. Nomura, “Synthesis of zinc and zinc oxide nanoparticles from zinc electrode using plasma in liquid.” Materials letters, 65 (2011) 188.
[21] L. Lin, and Q. Wang, “Microplasma: a new generation of technology for functional nanomaterial synthesis.” Plasma Chemistry and Plasma Processing, 35 (2015) 925 .
[22] D. Mariotti, and K. Ostrikov, “Tailoring microplasma nanofabrication: from nanostructures to nanoarchitectures.” Journal of Physics D: Applied Physics, 2 (2009) 092002.
[23] D. Mariotti, and R. M. Sankaran, “Microplasmas for nanomaterials synthesis.” Journal of Physics D: Applied Physics, 43 (2010) 323001 .
[24] D. Mariotti, “Nonequilibrium and effect of gas mixtures in an atmospheric micro plasma.” Applied Physics Letters, 92 (2008) 151505 .
[25] T. Seto, S. B. Kwon, M. Hirasawa, and A. Yabe, “Decomposition of toluene with surface-discharge microplasma device.” Japanese Journal of Applied Physics, 44 (2005) 5206 .
[26] P. K. Singh, J. Hopwood, and S. Sonkusale, “Metamaterials for remote generation of spatially controllable two-dimensional array of microplasma.” Scientific Reports, 4 (2014) 5964 .
[27] S. Askari, I. Levchenko, K. Ostrikov, P. Maguire, and D. Mariotti, “Crystalline Si nanoparticles below
crystallization threshold: effects of collisional heating in non-thermal atmospheric-pressure microplasmas.” Applied Physics Letters, 104 (2014) 163103 .
[28] A. El-Habachi, M. Moselhy, R. H. Stark, and K. H. Schoenbach, “Excimer emission from microhollow cathode discharges.” in Plasma Science, 2000. ICOPS 2000. IEEE Conference Record-Abstracts. The 27th IEEE International Conference on. 2000. IEEE.
[29] X. Z. Huang, X. X. Zhong, Y. Lu, Y. S. Li, A. E. Rider, S. A. Furman, and K. Ostrikov, “Plasmonic Ag nanoparticles via environment-benign atmospheric microplasma electrochemistry.” Nanotechnology, 24 (2013) 095604 .
[30] J. B. Joffrion, W. Clower, and C. G. Wilson, “Tunable excitation-independent emissions from graphene quantum dots through microplasmaassisted electrochemical synthesis.” Nano- Structures & Nano-Objects, 19 (2019) 100341.
[31] T. Oldham, and E. Thimsen, “Electrochemical structure of the plasma–liquid interface.” The Journal of Physical Chemistry C, 2 (2022) 1222.
[32] T. Van Cong, N. D. Hung, L. X. Bach, T. Van Hung, and N. N. Dang, “Factors affecting the formation of plasma on Fe, Cu and W electrodes using an electrochemical reaction in an aqueous environment with high-voltage DC.” Journal of
Materials Research and Technology 10 (2021) 1462.