Influence of irradiation time on the structural and optical characteristics of Ag nanostructure produced by atmospheric pressure plasma

Document Type : Original Article

Authors

Plasma and Nuclear Fusion Research School, Nuclear Science and Technology Research Institute, Tehran, Iran.

Abstract

This article presents a method for producing silver nanoparticles through plasma at atmospheric pressure using electrochemical techniques. Initially, an electrochemical configuration is designed using atmospheric pressure plasma (a direct current (DC) source). Subsequently, silver nanoparticles were produced in an environment without a stabilizer and evaluated according to the treatment time. The results demonstrate that the plasma-based electrochemical method, in comparison to other methods, including traditional electrochemical, can increase the accuracy in the shape and structure of nanoparticles while simultaneously accelerating the synthesized processes of nanomaterials. Analysis revealed that the synthesized nanostructures range between 2 and 3 nanometers in size and exhibit rod-like shapes, among other morphologies.

Keywords

Main Subjects

Article Title [Persian]

تأثیر زمان پرتودهی پلاسما بر ویژگی‌های ساختاری و نوری نانوساختارهای نقره تولید شده توسط پلاسمای فشار اتمسفر

Authors [Persian]

  • زهره دهقانی
  • الناز خلیل زاده

پژوهشکده پلاسما و گداخت هسته ای، پژوهشگاه علوم و فنون هسته ای، تهران، ایران.

Abstract [Persian]

این پژوهش به تولید نانوذرات نقره از طریق میکروپلاسما در فشار اتمسفر با استفاده از چیدمان الکتروشیمیایی- پلاسما می‌پردازد. در این کار ابتدا، پیکربندی الکتروشیمیایی با استفاده از میکروپلاسما در فشار اتمسفر و منبع DC طراحی شده و سپس، نانوذرات نقره در محیطی بدون پایدارکننده تولید و مورد بررسی قرار گرفتند. نتایج نشان می‌دهد که روش الکتروشیمیایی بر پایه میکروپلاسما نسبت به روش‌های دیگر، از جمله الکتروشیمیایی سنتی، علاوه بر افزایش دقت در شکل و ساختار نانوذرات، منجر به تسریع در فرآیندهای ساخت نانومواد می‌شود. علاوه بر این، تجزیه و تحلیل نانو ذرات ساخته شده، نشان می دهد که با توجه به شرایط ساخت (زمان)، می‌توان نانوذراتی با مورفولوژی مختلف مانند کروی و میله ای ساخت.

Keywords [Persian]

  • پلاسما
  • میکروسکوپ الکترونی عبوری (TEM)؛ زمان پرتودهی؛ نانوساختارهای نقره
[1] Y. Shang, M. K. Hasan, G. J. Ahammed, M. Li, H. Yin, and J. Zhou, “Applications of nanotechnology in plant growth and crop protection: a review.” Molecules, 24 (2019) 2558.
[2] R. K. Ibrahim, M. Hayyan, M. A. AlSaadi, A. Hayyan, and S. Ibrahim, “Environmental application of nanotechnology: air, soil, and water.” Environmental Science and Pollution Research, 23 (2016) 13754-13788.
[3] M. S. Chavali, and M. P. Nikolova, “Metal oxide nanoparticles and their applications in nanotechnology.” SN Applied Sciences, 1 (2019) 607.
[4] L. Liu, X. B. Luo, L. Ding, and S. L. Luo, “Application of nanotechnology in the removal of heavy metal from water.” Nanomaterials for the Removal of Pollutants and Resource Reutilization, (2019) 83.
[5] S. Malik, K. Muhammad, and Y. Waheed, “Nanotechnology: A revolution in modern industry.” Molecules, 2 (2023) 661.
[6] S. Malik, K. Muhammad, and Y. Waheed, “Emerging applications of nanotechnology in healthcare and medicine.” Molecules, 18 (2023) 6624.
[7] V. P. Chavda, D. Acharya, V. Hala, S. Daware, and L. K. Vora, “Sunscreens: A comprehensive review with the application of nanotechnology.” Journal of Drug Delivery Science and Technology, 86 (2023)104720.
[8] Y. T. Youns, A. K. Manshad, and J. A. Ali, “Sustainable aspects behind the application of nanotechnology in CO2 sequestration.” Fuel, 349 (2023) 128680.
[9] M. T. Ahmed, M. S. Ali, T. Ahamed, S. Suraiya, and M. Haq, “Exploring the aspects of the application of nanotechnology system in aquaculture: a systematic review.” Aquaculture International, 32 (2024) 4177.
[10] N. Mohammed, S. H. Nawar, M. S. Etawy, G. E. Nassar, and A. G. Hassabo, “Nanotechnology and its applications in industry and product design.” Journal of Textiles, Coloration and Polymer Science, 2 (2024) 273.
[11] R. Bansal, H. C. Barshilia, and K. K. Pandey, “Nanotechnology in wood science: Innovations and applications.” International Journal of Biological Macromolecules, 262 (2024) 130025.
[12] M. Yilmaz, N. Canpolat, and S. Aydoğan, “Surface plasmon resonance effects of Ag@ ZnO core–shell nanostructure in UV and visible light for photodiode applications.” Journal of the American Ceramic Society, 5 (2024) 3390.
[13] O. S. Ivanova, C. R. Lin, I. S. Edelman, E. S. Svetlitsky, A. E. Sokolov, S. M. Zharkov, A. L. Sukhachev, S. A. Vorobyev, D. A. Petrov, and E. S. Lin, “Adsorption properties and catalytic activity of Fe3O4-Ag nanostructures.” Applied Surface Science,
665 (2024) 160236.
[14] S. Rani, and A. K. Shukla, “Investigation of hydrophobic bimetallic cost-effective Cu-Ag nanostructures as SERS sensor.” Plasmonics, 2 (2024) 985.
[15] H. K. Lin, Y. M. Ding, W. I. Yen, C. H. Chen, and J. R. Lee, “Enhanced SERS performance of Ag nanoparticles using hybrid dewetting process for melamine detection.” Optics & Laser Technology, 181 (2025) 111673.
[16] S. Vijayaram, H. Razafindralambo, Y. Z. Sun, S. Vasantharaj, H. Ghafarifarsani, S. H. Hoseinifar, and M. Raeeszadeh, “Applications of green synthesized metal nanoparticles—a review.” Biological Trace Element Research, 1 (2024) 360.
[17] F. Arshad, G. A. Naikoo, I. U. Hassan, S. R. Chava, M. El-Tanani, A. A. Aljabali, and M. M. Tambuwala, “Bioinspired and green synthesis of silver nanoparticles for medical applications: a green perspective.” Applied Biochemistry and
Biotechnology, 6 (2024) 3636.
[18] O. Pryshchepa, P. Pomastowski, and B. Buszewski, “Silver nanoparticles: Synthesis, investigation techniques, and properties.” Advances in Colloid and Interface Science, 284 (2020) 102246.
[19] L. Xu, Y. Y. Wang, J. Huang, C. Y. Chen, Z. X. Wang, and H. Xie, “Silver nanoparticles: Synthesis, medical applications and biosafety.” Theranostics, 20 (2020) 8996.
[20] Y. Hattori, S. Mukasa, H. Toyota, T. Inoue, and S. Nomura, “Synthesis of zinc and zinc oxide nanoparticles from zinc electrode using plasma in liquid.” Materials letters, 65 (2011) 188.
[21] L. Lin, and Q. Wang, “Microplasma: a new generation of technology for functional nanomaterial synthesis.” Plasma Chemistry and Plasma Processing, 35 (2015) 925 .
[22] D. Mariotti, and K. Ostrikov, “Tailoring microplasma nanofabrication: from nanostructures to nanoarchitectures.” Journal of Physics D: Applied Physics, 2 (2009) 092002.
[23] D. Mariotti, and R. M. Sankaran, “Microplasmas for nanomaterials synthesis.” Journal of Physics D: Applied Physics, 43 (2010) 323001 .
[24] D. Mariotti, “Nonequilibrium and effect of gas mixtures in an atmospheric micro plasma.” Applied Physics Letters, 92 (2008) 151505 .
[25] T. Seto, S. B. Kwon, M. Hirasawa, and A. Yabe, “Decomposition of toluene with surface-discharge microplasma device.” Japanese Journal of Applied Physics, 44 (2005) 5206 .
[26] P. K. Singh, J. Hopwood, and S. Sonkusale, “Metamaterials for remote generation of spatially controllable two-dimensional array of microplasma.” Scientific Reports, 4 (2014) 5964 .
[27] S. Askari, I. Levchenko, K. Ostrikov, P. Maguire, and D. Mariotti, “Crystalline Si nanoparticles below
crystallization threshold: effects of collisional heating in non-thermal atmospheric-pressure microplasmas.” Applied Physics Letters, 104 (2014) 163103 .
[28] A. El-Habachi, M. Moselhy, R. H. Stark, and K. H. Schoenbach, “Excimer emission from microhollow cathode discharges.” in Plasma Science, 2000. ICOPS 2000. IEEE Conference Record-Abstracts. The 27th IEEE International Conference on. 2000. IEEE.
[29] X. Z. Huang, X. X. Zhong, Y. Lu, Y. S. Li, A. E. Rider, S. A. Furman, and K. Ostrikov, “Plasmonic Ag nanoparticles via environment-benign atmospheric microplasma electrochemistry.” Nanotechnology, 24 (2013) 095604 .
[30] J. B. Joffrion, W. Clower, and C. G. Wilson, “Tunable excitation-independent emissions from graphene quantum dots through microplasmaassisted electrochemical synthesis.” Nano- Structures & Nano-Objects, 19 (2019) 100341.
[31] T. Oldham, and E. Thimsen, “Electrochemical structure of the plasma–liquid interface.” The Journal of Physical Chemistry C, 2 (2022) 1222.
[32] T. Van Cong, N. D. Hung, L. X. Bach, T. Van Hung, and N. N. Dang, “Factors affecting the formation of plasma on Fe, Cu and W electrodes using an electrochemical reaction in an aqueous environment with high-voltage DC.” Journal of
Materials Research and Technology 10 (2021) 1462.