Synthesis of microstructure diamond and related materials at different CH4 /H2 in the reactant gases

Document Type : Original Article

Author

Department of Physics, West Tehran Branch, Islamic Azad University, Tehran, Iran.

Abstract

Diamond structure were deposited on gold coated Si substrate successfully using DC-PECVD technique at different CH4 /H2 in the reactant gases (CH4/H2 = 2, 5 and 7 vol. %). Characterization of diamond structure has been investigated in detail by X-ray diffraction (XRD), Raman spectroscopy (RS), atomic force microscopy (AFM) and scanning electron microscopy (SEM). The results determined the effect of the different CH4 /H2 in the reactant gases on the crystallinity, phase, surface morphology and microstructure. The XRD patterns showed polycrystalline structure with diamond (111) preferred growth orientation and better crystalline quality at middle methane concentrations. The first order Raman peak for diamond phase was more intense at middle methane concentrations, while a relatively broad G-band from the graphitic species was appearance. Diamond structures with large grain sizes in the micron or tens of micron range have homogenous surface.

Keywords

Main Subjects

Article Title [Persian]

سنتز ریزساختار الماس و مواد مرتبط در CH4/H2 مختلف در گازهای واکنش دهنده

Author [Persian]

  • سمیه عسگری

گروه فیزیک، دانشگاه آزاد اسلامی واحد تهران غرب، تهران، ایران.

Abstract [Persian]

ساختار الماس با استفاده از روش DC-PECVD در CH4/H2 مختلف در گازهای واکنش دهنده (CH4/H2 = 2، 5 و 7 حجم درصد) با موفقیت بر روی زیرلایه Si پوشش داده شده با طلا انباشت شد. خصوصیات ساختار الماس با پراش پرتو ایکس (XRD)، طیف‌سنجی رامان (RS)، میکروسکوپ نیروی اتمی (AFM) و میکروسکوپ الکترونی روبشی (SEM) به تفصیل بررسی شده است. نتایج اثر CH4 / H2 مختلف در گازهای واکنش دهنده را بر کریستالی، فاز، مورفولوژی سطح و ریزساختار تعیین کرد. الگوهای XRD ساختار چند کریستالی با جهت گیری رشد ترجیحی الماس (111) و کیفیت کریستالی بهتر در غلظت های متوسط ​​متان را نشان دادند. پیک مرتبه اول رامان برای فاز الماس در غلظت‌های متوسط ​​متان شدیدتر بود، در حالی که یک باند G نسبتاً وسیع از گونه‌های گرافیتی ظاهر شد. سازه های الماس با اندازه دانه های بزرگ در محدوده میکرون یا ده ها میکرون دارای سطح همگن هستند.

Keywords [Persian]

  • ساختار الماس
  • روش PECVD
  • رامان
  • XRD

 [1] T. Lühmann, et al., “Investigation of the  graphitization process of ion-beam irradiated diamond using ellipsometry, Raman spectroscopy and electrical transport measurements.“ Carbon N Y. 121 (2017) 512.

[2] J. Prasek, et al., “Methods for carbon nanotubes synthesis Review." Journal of Materials Chemistry, 21 (2011) 15872.

[3] M. Prato, “[60] Fullerene chemistry for materials science applications.” Journal of Materials Chemistry, 7 (1997) 1097.

[4] J. Robertson, “Diamond-Like Amorphous Carbon. Materials Science and Engineering: R: Reports.” 37 (2002) 129.

[5] C.N.R. Rao et al., “Graphene: the new twodimensional nanomaterial.“ Angewandte Chemie International Edition, 48 (2009) 7752.

[6] C. Artini et al., “Diamond–metal interfaces in cutting tools: a review.” Journal of Materials Science, 47 (2012) 3252.

[7] J. E. Field (Ed.), Properties of Natural and Synthetic Diamond, Academic Press, London, 1999.

[8] R. Sengupta et al., “A Review on the Mechanical and Electrical Properties of Graphite and Modified Graphite Reinforced Polymer Composites.” Progress in Polymer Science, 36 (2011) 638.

[9] H. O. Pierson, Handbook of Carbon, Graphite, Diamonds and Fullerenes: Processing, Properties and Applications, Noyes Publications, New Jersey, 1993.

[10] J. Vetter, “60 years of DLC coatings: historical highlights and technical review of cathodic arc processes to synthesize various DLC types, and their evolution for industrial applications.” Surface and Coatings Technology, 257 (2014) 213.

[11] D. R. McKenzie, “Tetrahedral bonding in amorphous carbon.” Reports on Progress in Physics, 59 (1996) 1611. 

 [12] P. Koidl et al., “Plasma Deposition, Properties and Structure of Amorphous Hydrogenated Carbon Films.” Materials Science Forum, 52 (1991) 41.

[13] G. M. Pharr et al., “Hardness, elastic modulus, and structure of very hard carbon films produced by cathodic-arc deposition with substrate pulse biasing.” Applied physics letters, 68 (1996) 779.

[14] A. Grill, “Diamond-like carbon: state of the art.“ Diamond and Related Materials 8 (1999) 428.

[15] A.Kh. Khachatryan et al.,” Graphite-to-diamond transformation induced by ultrasound cavitation.” Diamond & Related Materials 17 (2008) 931.

[16] D. D. Awschalom et al., “The Diamond Age of Spintronics.” Scientific American, 297 (2007)84.

[17] R. P. Mildren et al., CVD-diamond external cavity Raman laser at 573 nm.” Optics Express, 16 (2008) 18950.

[18] L. E. Berman et al., “Diamond crystal X-ray optics for high-power-density synchrotron radiation beams.” Nuclear Instruments & Methods in Physics Research 329 (1993) 555.

[19] M. Thumm, “Progress on gyrotrons for ITER and future thermonuclear fusion reactor.” IEEE Transactions on Plasma Science, 39 (2011) 971.

[20] A. J. Maclean et al., “Limits on efficiency and power scaling in semiconductor disk lasers with diamond heatspreaders.” R. B. Birch, P.W Roth and et al. Journal of the Optical Society of America B, 26 (2009) 2228.

[21] C. E. Nebel et al., “Diamond and biology.” WileyVCH Verlag GmbH & Co. KGaA, 93 (2008) 439.

[22] S. Koizumi et al., ‘Ultraviolet emission from a diamond pn junction.” Science, 292 (2001) 1899.

[23] R. J. Hemley et al., “Growing Diamond Crystals by Chemical Vapor Deposition.” 1(2005) 105.

[24] R. S. Balmer et al., “Chemical vapour deposition synthetic diamond: Materials, technology and applications.” Journal of Physics Condensed Matter, 21 (2009) 364221.

[25] A. Grill, “Amorphous carbon based materials as the interconnect dielectric in ULSI chips.”Diamond and Related Materials 10 (2001) 234.

[26] Y. Komatsu et al., “Application of diamond-like carbon films to the integrated circuit fabrication process.” Diamond and Related Materials, 8 (1999) 2018.

[27] J. H. Sui et al., “Effect of diamond-like carbon (DLC) on the properties of the NiTi alloys.” Diamond and Related Materials. 15 (2006) 1720.

[28] O.L. Eryilmaz et al., ‘Deposition, characterization, and tribological applications of near-frictionless carbon films on glass and ceramic substrates.“ Journal of Physics and Condense Matter, 18 (2006) 1751.

[29] J. Robertson, “Diamond-Like Amorphous Carbon.” Materials Science Engineering, 37 (2002) 129.

[30] Y. Liou et al., “Effect of oxygen in diamond deposition at low substrate temperatures.” Applied Physics Letters, 56 (1990) 437.

[31] F. Qian et al., “High intensity femtosecond laser deposition of diamond-like carbon thin films.” Journal of Applied Physics, 86 (1999) 2281.

[32] S. Logothetidis, “Hydrogen-free amorphous carbon films approaching diamond prepared by magnetron sputtering.” Applied Physics Letters, 69 (1996) 158.

[33] Y. Yamazaki et al., “Structural change in diamond by hydrogen plasma treatment at room temperature.” Diamond and Related Materials, 14 (2005) 1939.

[34] T. Lühmann et al., “Investigation of the graphitization process of ion-beam irradiated diamond using ellipsometry, Raman spectroscopy and electrical transport measurements.” Carbon, 121 (2017) 512.

[35] P. Bergonzo et al., “3D shaped mechanically flexible diamond microelectrode arrays for eye implant applications: the MEDINAS project.” IRBM News, 32 (2011) 91. 

 [36] N. Tokudan,” Homoepitaxial Diamond Growth by Plasma-Enhanced Chemical Vapor Deposition.” Novel Aspects of Diamond, 1 (2014) 1211.

[37] D. Tither et al., “Application of diamond-like carbon coatings deposited by plasma-assisted chemical vapour deposition onto metal matrix composites for two-stroke engine components.” Material Science, 32 (1995) 1931.

[38] S. M. Ojha., “Plasma-Enhanced Chemical Vapor Deposition of Thin Films.” Physics of Thin Films, 12 (1982) 237.

[39] A. Erdemir et al., ‘Friction and wear performance of diamond-like carbon films grown in various source gas plasmas.“ Surface and Coatings Technology, 120-121 (1999) 589.

[40] H. Liu et al., “The tribological characteristics of diamond-like carbon films at elevated temperatures.” Thin Solid Films, 346 (1999) 162.

[41] H. Yamada et al., “Field Electron-Emission from a-CNx:H Films Formed on Al Films Using Supermagnetron Plasma CVD.” Thin Solid Films, 270 (1995) 220.

[42] J. A. Mucha et al., “Growth and Characterization of PECVD Diamond Films.” Materials Research Society symposium proceedings, 250 (1982) 357.

[43] M. G. Peters et al., “PECVD (Plasma Enhanced Chemical Vapor Deposition) diamond thin films for research instrumentation.” Crystallume Proprietary Information, (1988) 1.

[44] S. Jiao et al., “Microstructure of ultrananocrystalline diamond films grown by microwave Ar-CH4 plasma chemical vapor deposition with or without added H2.” A. Sumant, M. A. Kirk, D. M. Gruen, A. R. Krauss et al., Journal of Applied Physics, 90 (2001) 118.

[45] W. Zhu et al., “Crystal growth and gas ratio effect of diamond films synthesized by oxyacetylene flames.” Diamond and Related Materials, 2 (1993) 491.

[46] K. Kobashi et al., “Synthesis of diamonds by use of microwave plasma chemical-vapor deposition:Morphology and growth of diamond films.” Physica; Review B, 38 (1988) 4067.

[47] M. Samadi et al., “The influence of gas flow rate on the structural, mechanical, optical and wettability of diamond-like carbon thin films.” Optical and Quantum Electronics, 50 (2018) 1.

 

[48] A. Varade et al., “Diamond-like carbon coating made by RF plasma enhanced chemical vapour deposition for protective antireflective coatings on germanium.” Procedia Engineering, 97 (2014) 1452.

[49] K. C. Yang et al., ”Influence of intermittently eatching on quality of CVD diamond thin films.” Transactions of Nonferrous Metals Society of China, 16 (2006) 321.

[50] Y. A. Mankelevich et al., “Three-dimensional simulation of a HFCVD reactor.” Diamond and Related Materials, 17 (2008) 1021.

 

[51] M. Frenklach, “The role of hydrogen in vapor deposition of diamond.” Applied Physics, 65 (1989) 5142.

[52] B.H. Al-Tamimi et al., “Synthesis and characterization of nanocrystalline diamond from graphite flakes via a cavitation-promoted process.” Heliyon 5, (2019) 01682.

[53] Byeong-Kwan Song et al., “Unusual Dependence of the Diamond Growth Rate on the Methane Concentration in the Hot Filament Chemical Vapor Deposition Process.” Materials. 14 (2021) 426.

[54] C. Lee et al., “Anomalous Lattice Vibrations of Single- and Few-Layer MoS2.” ACS Nano, 4 (2010) 2695.

[55] A. Rakha et al., “Ion Irradiation-Induced Modifications of Diamond Nanorods Synthesised by Microwave Plasma Chemical Vapour Deposition.” Journal of Experimental Nanoscience, 8 (2013) 555.

[56] B.V. Spitsyn et al., “Vapor growth of diamond on diamond and other surfaces.” Journal of Crystal Growth 52 (1981) 219.

[57] S.A. Solin et al., “Raman Spectrum of Diamond .” Physical Review B, 1 (1970) 1687. 

 [58] K. Huang et al., “The oxidization behavior and mechanical properties of ultrananocrystalline diamond films at high temperature annealing.” Applied Surface Science, 317 (2014) 11.

[59] W. Zhang et al., Anodic Electrochemical Pretreatment Time and Potential Affect the Electrochemical Characteristics of Moderately Boron-Doped Diamond Electrode.” Collection of Czechoslovak Chemical Communications, 73 (2008) 73.

[60] X.J. Hu et al., “n-type conductivity and phase transition in ultrananocrystalline diamond films by oxygen ion implantation and annealing.” Journal of Applied Physics, 109 (2011) 053524.

[61] J.K. Shin et al., “Effect of residual stress on the Raman-spectrum analysis of tetrahedral amorphous carbon films.” Applied Physics Letters, 78 (2011) 631.

[62] V. Ralchenko et al., ‘Structure and properties of high-temperature annealed CVD diamond.” Diamond and Related Materials, 12 (2003) 1964.

[63] S. Asgary et al., Structure, morphology and electrical resistance of WxN thin film synthesized by HFCVD method with various N2 contents.” Rare Metals, 39 (2020) 1440.