The influence of single carbon atom impurity on the electronic transport of two side-closed (6, 0) single-walled boron nitride nanotubes

Document Type : Original Article

Author

Department of Physics, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran

Abstract

This study investigated the effect of single-carbon atom impurity on the electronic properties of two side-closed (6, 0) single-walled boron nitride nanotubes ((6, 0) TSC-SWBNNTs) in the center, left, and right sides of this NT. The band gap was affected and significantly reduced by applying single-carbon atom impurity. Most changes in the band gap were related to the impurity of the carbon atom in the center of the NT. The comparison of transmission spectrum figures and the density of states figures demonstrated that at points of energy where resonance occurs between the electron of collision and the molecular levels, the peaks of the transmission coefficient are close to the molecular levels, leading to electron transportation and conduction occurrenceIn addition, despite the existing regularity in the arrangement of boron and nitrogen atoms on the two sides of the NT and the positive influence of the interference effect in the two sides of the NT, with the increase of the bias voltage, especially in the low bias voltage, there was not a visible decrease in the current value. Overall, the presence of negative resistance in the current figure in terms of bias voltage can be used as a high-speed electronic switch.

Keywords

Main Subjects

Article Title [Persian]

اثر ناخالصی تک اتم کربن بر ترابرد الکترونیکی نانولوله ی نیترید بور دو سر بسته ی (6،0)

Author [Persian]

  • علی محمد یدالهی

گروه فیزیک، دانشگاه آزاد اسلامی، واحد آیت الله آملی، آمل، ایران

Abstract [Persian]

این مطالعه اثر ناخالصی تک اتم کربن را بر خواص الکترونیکی نانولوله دو سر بسته نیترید بور (0و6) در مرکز، چپ و راست بررسی نموده است. شکاف باند با اعمال ناخالصی تک اتم کربن به طور قابل توجهی کاهش یافته است. بیشتر تغییرات در شکاف باند مربوط به ناخالصی اتم کربن در مرکز این نانولوله می باشد. مقایسه نمودارهای طیف انتقال و چگالی حالات نشان می دهد که در نقاطی از انرژی که رزونانس بین الکترون برخورد و سطوح مولکولی رخ می‌دهد، قله‌های ضریب انتقال نزدیک به سطوح مولکولی اتفاق می افتد که منجر به ترابرد و هدایت الکترونی می‌شود. علاوه بر این، با وجود نظم موجود در آرایش اتم های بور و نیتروژن در دو طرف نانولوله و تأثیر مثبت اثر تداخل در دو طرف این نانولوله، با افزایش ولتاژ بایاس، به ویژه در پایین ولتاژ بایاس، کاهش قابل مشاهده ای در مقدار جریان وجود ندارد. به طور کلی، وجود مقاومت منفی برحسب ولتاژ بایاس می تواند به عنوان یک کلید الکترونیکی پرسرعت استفاده شود.

Keywords [Persian]

  • ترابرد
  • جریان
  • نانولوله های نیترید بور
  • ترابرد الکترونیکی
  • مقاومت دیفرانسیلی منفی
[1] E. A. Turhan et al. “Properties and applications of boron nitride nanotubes”. Nanotechnology 33 (2022) 242001. DOI: https://doi.org/10.1088/1361-6528/ac5839.
[2] X. Blasé et al. “Stability and Band Gap Constancy of Boron Nitride Nanotubes”. Europhys. Lett. 28 (1994) 335-340. DOI: 10.1209/0295-5075/28/5/007.
[3] R. Cruz-Silva et al. “Fullerene and nanotube growth: new insights using first principles and molecular dynamics”. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 374(2076) (2016) 20150327. DOI: https://doi.org/10.1098/rsta.2015.0327.
[4] R. Wu et al. “Magnetism in BN nanotubes induced by carbon doping”. Appl. Phys. Lett. 86 (2005) 122510. DOI: https://doi.org/10.1063/1.1890477.
[5] K. Khoo et al. “Tuning the electronic properties of boron nitride nanotubes with transverse electric fields: A giant dc Stark effect”. Phys. Rev. B 69 (2004) 201401. DOI: https://doi.org/10.1103/PhysRevB.69.201401.
[6] C. Y. Won et al. “Structure and Dynamics of Water Confined in a Boron Nitride Nanotube”. J. Phys. Chem. C 112 (2008) 1812–8. DOI: https://doi.org/10.1021/jp076747u.
[7] T. Schmidt et al. “Theoretical study of native defects in BN nanotubes”. Phys. Rev. B 67 (2003) 113407. DOI: 10.1103/PhysRevB.67.113407.
[8] Z. Liu et al. “B-N versus C-C: How Similar Are They?”. Angew. Chem. Int. Ed. 47 (2008) 242–4. DOI: 10.1002/anie.200703535.
[9] S. Dolati et al. “A Comparison Study between Boron nitride Nanotubes and Carbon Nanotubes”. International Journal of Emerging Technology and Advanced Engineering 2(10) (2012) 470-474.
[10] M. Terrones Maldonado et al. “Pure and doped boron nitride nanotubes”. Materials Today 10 (2007) 30–8. DOI: https://doi.org/10.1016/S1369-7021(07)70077-9.
[11] D. Golberg et al. “Boron Nitride Nanotubes”. Adv. Mater 19 (2007) 2413–32. DOI: https://doi.org/10.1002/adma.200700179.
[12] L. Esaki "New phenomenon in narrow germanium p− n junctions." Physical review 109(2) (1958) 603. DOI: https://doi.org/10.1103/PhysRev.109.603.
[13] M. Oehme et al. "Very High Room-temperature peak-to-valley current ratio in Si Esaki tunneling diodes (March 2010)." IEEE transactions on electron devices 57(11) (2010) 2857-2863. DOI: 10.1109/TED.2010.2068395.
[14] W. Y. Fung et al. "Esaki tunnel diodes based on vertical Si-Ge nanowire heterojunctions." Applied Physics Letters 99(9) (2011) 092108. DOI: https://doi.org/10.1063/1.3633347.
[15] S. M. Sze et al. "Physics of Semiconductor Devices." (2006) A. P. - 832 pages.
[16] E. Almahmoud et al. “Band gap tuning in carbon doped boron nitride mono sheet with Stone Wales defect: a simulation study”. Mater. Res. Express 6(10) (2019) 105038. DOI: https://doi.org/10.1088/2053-1591/ab39a3.
[17] I. Petrushenko et al. “Stone-Wales Defects in Graphene-like Boron Nitride-Carbon Heterostructures: Formation Energies, Structural Properties, and Reactivity”. Computational Materials Science 128 (2017) 243-248. DOI: https://doi.org/10.1016/j.commatsci.2016.11.039.
[18] J.F. Jia et al. “The structure and electronic property of BN nanotube”. Phys. B Condens. Matter 381 (2006) 90-95.  DOI: https://doi.org/10.1016/j.physb.2005.12.258.
[19] J.X. Zhao et al. “A theoretical study on the conductivity of carbon doped BNNT”. J. Chin. Chem. Soc. 52 (2005) 395-398. DOI: https://doi.org/10.1002/jccs.200500059.
[20] A. Talla Jamal et al. “Structural characterization of deformed boron nitride nanotubes”. J. Comput. Theor. Nanosci 11(8) (2014) 1838-1843. DOI: https://doi.org/10.1166/jctn.2014.3576.
[21] D.A. Papaconstantopoulos et al. “The Slater–Koster tight-binding method: a computationally efficient and accurate approach”. J. Phys.: Condens. Matter 15 (2003) 413–440. DOI: 10.1088/0953-8984/15/10/201.
[22] L. Ci. “Atomic layers of hybridized boron nitride and graphene domains”. Nat. Mater 9 (2010) 430–435. DOI: https://doi.org/10.1038/nmat2711.
[23] A. Pecchia et al. “Non-equilibrium Green’s functions in density functional tight binding: method and applications”. New Journal of Physics 10 (2008) 065022. DOI: 10.1088/1367-2630/10/6/065022.
[24] M. D. Ganji et al. “Density functional non-equilibrium Green's function (DFT-NEGF) study of the smallest nano-molecular switch”. Physica E: Low-dimensional Systems and Nanostructures 40 (7) (2008) 2606-2613. DOI: https://doi.org/10.1016/j.physe.2007.09.123.
[25] J. Schneider et al. “ATK-ForceField: a new generation molecular dynamics software package”. Modelling Simul. Mater. Sci. Eng 25 (2017) 085007. DOI: 10.1088/1361-651X/aa8ff0.
[26] P. Zhao et al. “Rectifying behavior in nitrogen-doped zigzag single-walled carbon nanotube junctions”. Solid State Communications 152 (2012) 2040–2044. DOI: https://doi.org/10.1016/j.ssc.2012.08.013.
[27] M. Wang et al. “Spin transport properties in Fe-doped graphene/hexagonal boron-nitride nanoribbons heterostructures”. Physics Letters A 383(18) (2019) 2217-2222. DOI: 10.1016/j.physleta. 2019.04.022.
[28] T. Markussen et al. “Surface-Decorated Silicon Nanowires: A Route to High-ZT Thermoelectrics”.  Physical Review Letters 103 (2009) 055502(4). DOI: https://doi.org/10.1103/PhysRevLett.103.055502.
[29] A. M. Yadollahi et al. “Thermoelectric properties of two sided-closed single-walled boron nitride nanotubes (6, 3)”. Indian Journal of Physics 96 (2022) 3493–3500. DOI: https://doi.org/10.1007/s12648-021-02255-2.
[30] A.M. Yadollahi et al. “Effect of temperature changes on thermoelectric properties of the two sided-closed single-walled BNNTs (6, 3). Journal of Interfaces”. Thin Films, and Low dimensional systems (JITL) 5(1) (2022) 421-427. DOI: 10.22051/jitl.202.40200.1072.
[31] A.M. Yadollahi et al. “Effect of impurity and temperature changes on the thermoelectric properties of the (6, 3) two sided-closed single-walled boron nitride nanotubes ((6, 3) TSC-SWBNNTs)”. Journal of Therotical and Applied Physics (JTAP) 16(3) (2022) 162230-162240. DOI: 10.30495/jtap. 162230.
[32] R. Sadeghi et al. “Thermoelectric properties of zigzag single-walled Carbon nanotubes and zigzag single-walled Boron Nitride nanotubes (9, 0)”. Int. J. Nano Dimens 13 (3) (2022) 311-319. DOI: 10.22034/IJND.2022.1951622.2118.
[33] P. Zhao et al. “Rectifying behavior in nitrogen-doped zigzag single-walled carbon nanotube junctions”. Solid State Communications 152 (2012) 2040–2044. DOI: https://doi.org/10.1016/j.ssc.2012.08.013.
[34] S. Datta. “Electronic Transport in Mesoscopic Systems”. Cambridge University Press, New York, (1995).
[35] P. Chaudhuri et al. “Density functional study of glycine adsorption on single-walled BN nanotubes”. Appl. Surf. Sci 536 (2020) 147686. DOI: 10.1016/j.apsusc.2020.147686.
[36] J.X. Zhao et al. “A Theoretical Study on the Conductivity of Carbon Doped BNNT”. J. Chin. Chem Soc 52 (2005) 395-398. DOI: https://doi.org/10.1002/jccs.200500059.
[3] C. Rui et al. “Transport properties of B/P doped grapheme nanoribbon field-effect transistor”. Materials Science in Semiconductor Processing 130 (2021) 105826. DOI: https://doi.org/10.1016/j.mssp. 2021. 105826.
[38] L. Song. “Large scale growth and characterization of atomic hexagonal boron nitride layers”. Nano Lett 10 (2010) 3209–3215. https://doi.org/10.1021/nl1022139.
[39] M.R. Roknabadi et al. “Electronic and optical properties of pure and doped boron-nitride nano”. Physica. B 410 (2013) 212–216. DOI: https://doi.org/10.1016/j. physb.2012.10.033.
[40] Ali Mohammad Yadollahi1 et al.” The influence of single carbon atom impurity on the electronic transport of (6, 3) two side‑closed single‑walled boron nitride nanotubes”. Journal of Molecular Modeling 29 (2023) 133. DOI: https://doi.org/10.1007/s00894-023-05493-9.
[41] M. Yaghobi et al. “Electronic transport through a C60–n Xn (X=N and B) molecular bridge”. Molecular Physics 109 (14) (2011) 1821–1829. DOI: 10.1080/00268976.2011.593567.