The effects of Graphite and CNTs doping on TiO2 properties in anatase phase

Document Type : Original Article

Authors

Department of Condensed Matter Physics, Faculty of Physics, Alzahra University, Tehran, Iran.

Abstract

In this research, we synthesized titanium dioxide (TiO2) nanoparticles by sol-gel method, and doped with different percentages (0.2%wt and 0.5%wt) of graphite and carbon nanotubes (CNTs). The X-ray diffraction analysis of the samples showed the formation of anatase phase of pure and doped TiO2 samples. We checked the morphology and grains size of the samples by using FESEM analysis we measured the grain size, which was reduced from 65 nm to 42 nm by doping. The electrical properties of the samples have investigated by LCR meter and measured the capacitance, energy dissipation and conductivity of the samples. The results of the electrical measurements showed that the conductivity of the samples increased from 58.51(Ωm)-1(*10-12) to 67.52 (Ωm)-1(*10-12) with doping. We used UV-Vis and FT-IR analysis to investigate optical properties of the samples. We found that CNTs doped samples have more conductivity and smaller grain size than graphite doped samples

Keywords

Main Subjects

Article Title [Persian]

اثرات آلایش نانو لوله های کربنی (CNTs) و گرافیت بر خواص اکسید تیتانیوم (TiO2) در فاز آناتاز

Abstract [Persian]

در این پژوهش نانو ذرات اکسید تیتانیوم به روش سل-ژل سنتز و با درصدهای مختلف ( 0.2 و 0.5 درصد وزنی) گرافیت و نانو لوله های کربنی آلائیده شد.آنالیز پراش پرتو ایکس نمونه ها شکل گیری فاز آناتاز نمونه های خالص و آلاییده اکسید تیتانیوم را نشان داد. مورفولوژی و اندازه دانه های نمونه ها با آنالیز FESEM بررسی و نشان داد که متوسط اندازه دانه نمونه های آلاییده، از 65 نانومتربرای نمونه TiO2 خالص به 42 نانومتر کاهش یافت. خواص الکتریکی نمونه ها با LCR متر بررسی و رسانندگی، ظرفیت و اتلاف نمونه ها اندازه گیری شد. نتایج اندازه گیری های الکتریکی نشان داد که رسانندگی نمونه ها از 58.51(Ωm)-1(*10-12) به 67.52 (Ωm)-1(*10-12) با آلایش افزایش می یابد. با آنالیزهای UV-Vis و FT-IR خواص اپتیکی نمونه ها بررسی شدند. دریافتیم که نمونه های آلاییده به CNTs دارای رسانندگی بیشتر و اندازه دانه های کوچکتری نسبت به نمونه های آلاییده به گرافیت هستند.

Keywords [Persian]

  • اکسید تیتانیوم
  • نانو لوله های کربنی
  • رسانندگی
  • ظرفیت
  • گاف نواری انرژی
[1] Z. M Seeley, A. Bandyopadhyay, S. Bose, “Titanium dioxide thin films for high temperature gas sensors.” Thin Solid Films, 519 (2010) 434-438.
[2] T. Ohzuku, Z. Takehara, S. Yoshizawa, “Nonaqueous lithium/titanium dioxide cell.” Electrochimica Acta, 24 (1979) 219-222.
[3] S. Y. Wu, W. C. Lu, K. C. Chen, J. L. He, “Study on the preparation of nano-flaky anatase titania layer and their photovoltaic application.” Current Applied Physics, 10 (2010) S180-S183.
[4] A. Fujishima, T. N. Rao, D. A. Tryk, “Titanium dioxide photocatalysis.” Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 1 (2000) 1-21.
[5] X. Wang, Z. Li, J. Shi, Y. Yu, “One-dimensional titanium dioxide nanomaterials: nanowires, nanorods, and nanobelts.” Chemical Reviews, 14 (2014) 9346-9384.
[6] U. Diebold, “The surface science of TiO2.” Surface Science Reports, 48 (2009) 53-229.
[7] L. Stephen., “Titanium Dioxide Versatile Solid Crystalline: An Overview.” Assorted Dimensional Reconfigurable Materials, (2020) S35-S36.
[8] J. Zhang et al., “New understanding of the difference of photocatalytic activity among anatase, rutile and brookite TiO2.” Physical Chemistry Chemical Physics, 16 (2014) S20382–S20386.
[9] K. S. Ibrahim, “Carbon nanotubes-properties and applications: A Review.” Carbon Letters, 14 (2013) 131e144.
[10] R. Long, N. J. English, O. V. Prezhdo, “Photoinduced charge separation across the grapheneTiO2 interface is faster than energy losses: A time-domain ab initio analysis.” Journal of the American Chemical Society, 134 (2012) 14238– 14248.
[11] K. S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J.Y. Choi, B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes.” Nature, 457 (2009) 706–710.
[12] R. R. Nair et al., “Fine structure constant defines visual transparency of graphene.” Science, 320 (2008) 1308–1308. [13] M. Ghadiry et al., “Ultra-sensitive humidity sensor based on optical properties of graphene oxide and nano-anatase TiO2.” PLOS ONE, 11 (2016), e0149593.
[14] S. Wang, X. Cheng. “Solar photocatalytic degradation of typical indoor air pollutants using TiO2 thin film codoped with iron (III) and nitrogen.” Journal of Spectroscopy, 2015 (2015) S1-S6.
[15] P. Paunović,et al., “Structural changes of TiO2 as a result of CNTs incorporation.” Materials Science & Engineering, 6 (2022) 31-39.
[16] Debsish Sarkar, “Nanostructures Ceramics: Characterization and Analysis.” CRC Press (2018).
[17] Sada Kasap, “Principles of Electronic Materials and Devices (2nd Edition).” (2006) New York, McGraw-Hill. Dadras et al./Journal of Interfaces, Thin films, and Low dimensional systems 7 (2) Winter & Spring (2024) 765-772 772
[18] A. R. Zanatta, “Revisiting the optical bandgap of semiconductors and the proposal of a unified methodology to its determination.” Scientific Reports, 9 (2019) 11225.
[19] Y. F. Yuan et al., “Foam-like, 3-dimension mesoporous N-doped carbon-assembling TiO2 nanoparticles (P25) as high-performance anode material for lithium-ion batteries.” Journal of Power Sources, 420 (2019) 38-45.
[20] S. Chattopadhyay, S. Maiti, L. Das, S. Mahanty, G. De, “Electrospun TiO2-rGO composite nanofibers with ordered mesopores by molecular level assembly: a high performance anode material for lithium-ion batteries.” Advanced Materials Interfaces, 3 (2016) 1600761.
[21] Matouke Moise, “FTIR study of the binary effect of titanium dioxide nanoparticles (nTiO2) and copper (Cu2+) on the biochemical constituents of liver tissues of catfish.” Toxicology Reports, 6 (2019) 1061-1070.
[22] G. Susana, H. David, C. Jorge, H. Carlos, V. Lizbeth, A. Benjamín, R. Omar, “Development of a low-cost photocatalytic aerogel based on cellulose, carbon nanotubes, and TiO2 nanoparticles for the degradation of organic dyes.” Carbohydrate Polymers, 324 (2024) 121476.