The effect of system pressure on microstrain and photoluminescence properties of TiO2 nanowires

Document Type : Original Article

Author

Department of Physics, Islamic Azad University, Ruodehen, Iran.

Abstract

TiO2 nanowires were prepared by a thermal evaporation method at different pressures. The effects of pressure on morphology, microstructure, and photoluminescence properties were investigated by SEM, XRD, and spectrophotometer. XRD Analysis indicated the presence of rutile phases in samples. Williamson-Hall method was used for studying micro strain and crystallite size. The results showed that decreasing pressure leads to increasing micro strain due to increasing tension in the grain boundary with increasing oxygen vacancies as point defects. TiO2 nanowires prepared in lower pressure indicated weaker intensities in the PL spectrum due to increasing nonradiative centers obtained by oxygen vacancies that as an extinguisher the luminescence may trap photogenerated electron-hole.

Keywords

Main Subjects

Article Title [Persian]

اثر فشار هوا بر روی خواص میکروکرنش و فوتولومینسانس نانوسیم های TiO2

Author [Persian]

  • سعیده رمضانی ثانی

گروه فیزیک، دانشگاه آزاد اسلامی، واحد رودهن، ایران.

Abstract [Persian]

نانوسیم‌های TiO2 با روش تبخیر حرارتی در فشارهای مختلف تهیه می‌شوند. اثرات فشار بر مورفولوژی، ریزساختار، و خواص فتولومینسانس توسط SEM، XRD و اسپکتروفتومتر بررسی شد. تجزیه و تحلیل XRD وجود فازهای روتیل را در نمونه ها نشان داد. از روش ویلیامسون هال برای بررسی میکروکرنشو اندازه کریستالیت استفاده شد. نتایج نشان داد که کاهش فشار منجر به افزایش میکروکرنش به دلیل افزایش کشش در مرز دانه با افزایش فضای خالی اکسیژن به عنوان نقص نقطه ای می شود. نانوسیم‌های TiO2 تهیه‌شده در فشار پایین‌تر، شدت‌های ضعیف‌تری را در طیف PL نشان می‌دهند که دلیل آن افزایش مراکز غیر تشعشعی به‌دست‌آمده از جای خالی اکسیژن است که به عنوان خاموش‌کننده، لومینسانس ممکن است حفره‌های الکترونی تولید شده را به دام بیندازد.

Keywords [Persian]

  • نانوسیم های TiO2
  • سیستم
  • میکروکرنش
  • جاهای خالی اکسیژن
  • فتولومینسانس
[1] A. Khorsand Zak, W. H. Abd. Majid, M. E. Abrishami, R. Yousefi, “X-ray analysis of ZnO nanoparticles by Williamson–Hall and size– strain plot methods.” Solid State Sciences, 13 (2011) 251.
[2]. I. J. Kingsley; Abdul. Abraham; T. Aderemi; P. Ifeoma; A. Christianah; O. Martins, “Unravelling the effect of crystal dislocation density and microstrain of titanium dioxide nanoparticles on tetracycline removal performance.” Chemical Physics Letters, 776 (2021) 138725.
[3] H. Gleskova, S. Wagner, “Electron mobility in amorphous silicon thin-film transistors under compressive strain.” Applied Physics Letters, 79 (2001) 3347.
[4] S Stojadinović, A Ćirić, “Photoluminescence of ZnO: Eu3+ and ZnO: Tb3+ coatings formed by plasma electrolytic oxidation of pure zinc substrate” Journal of Luminescence, 235 (2021), 118022.
[5] I. Choudhary, R. Shukla, A. Sharma, K.K. Raina, “Effect of excitation wavelength and europium doping on the optical properties of nanoscale zinc oxide.” Journal of Materials Science Materials in Electronics, 31 (2020) 20033.
[6] Kazuhito Hashimoto, Hiroshi Irie, Akira Fujishima, “TiO2 photocatalysis: a historical overview and future prospects.” Journal of Applied Physics, 44 (2005) 8269.
[7] M. Mehrjouei, S. Müller, D. Möller, “A review on photocatalytic ozonation used for the treatment of water and wastewater.” Chemical Engineering Journal, 263 (2015) 209.
[8] A. Rothschild, A. Evakov, Y. Shapira, N. Ashkenasy, Y. Komen, “Surface photovoltage spectroscopy study of reduced and oxidized nanocrystalline TiO2 films.” Surface Sciences, 532 (2003) 420.
[9] E. G. J. Wijnhoven, W. L. Vos, “Preparation of photonic crystals made of air spheres in titania.” Science 281 (1998) 802.
[10] A. Richel, N. P. Johnson, D. McComb, “Observation of Bragg reflection in photonic crystals synthesized from air spheres in a titania matrix.” Applied Physics Letters, 76 (2000) 1816.
[11] U. Wang, R. T. GUO, Z. X. BI, X. Chen, X.HU, W. Pan. “A review on TiO2-x-based materials 745 for photocatalytic CO2 reduction.” Nanoscale, 14 (2022) 11512.
[12] J. Parkash, J. Cho, Y. Kumar Mishra, “Photocatalytic TiO2 nanomaterials as potential antimicrobial and antiviral agents: Scope against blocking the SARS-COV-2 spread” Micro and Nano Engineering, 14 (2022) 100100.
[13] A. R. Armstrong, J. Ganales, R. Garcia, P. G. Bruce, “Lithium‐Ion Intercalation into TiO2‐B Nanowires.” Advanced Materials, 17 (2005) 862.
[14] U. Bach, D. Lupo, M. P. Comte, J. E. Moser, F. Weissortel, J. Salbeacl, H. Spreitzer, M. Gratzel, “Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies.” Nature, 395 (1998) 583.
[15] M. Shooshtari, J. Salehi, “An electronic nose based on carbon nanotube-titanium dioxide hybrid nanostructures for detection and discrimination of volatile organic compounds” Sensors and Actuators B: Chemical, 357 (2022) 131418.
[16] K Y. Dong, Y. K. Dong, “Novel approach to the fabrication of macroporous polymers and their use as a template for crystalline titania nanorings.” Nano Letters, 3 (2003) 207.
[17] G. H. Du, Q. Chen, R. C. Che, Z. Y. Yuan, L. M. Peng, “Preparation and structure analysis of titanium oxide nanotubes.” Applied Physics Letters, 79 (2001) 3702.
[18] J. M. Wu, H. Shin, W. T. Wu, Y. K. Tseng, I. C. Chen. “Thermal evaporation growth and the luminescence property of TiO2 nanowires.” Journal of Crystal. Growth, 281 (2005) 384.
[19] K. Huo, X. Zhng, L. Hu, X. Sun, J. Fu, P. k. Chu, “One-step growth and field emission properties of quasialigned TiO2 nanowire/carbon nanocone core-shell nanostructure arrays on Ti substrates” Applied Physics Letters, 93 (2008) 013105.
[20] Y. wang, H. Yang, H. Xu, “DNA-like dyesensitized solar cells based on TiO2 nanowirecovered nanotube bilayer film electrodes.” Materials Letters, 64 (2010) 164.
[21] J. T. Mazumder, R. Mayengbam, A. Nath, M. B. Sarkar, “Investigation of structural, optical and electrical properties of TiO2 thin film-nanowirebased device for photodetector application.” Optical materials, 133 (2022) 112936.
[22] T. Shibata, H. Irie, D. A. Try, K. Hashimato, “Effect of Residual Stress on the Photochemical Properties of TiO2 Thin
Films.” The Journal of Physical Chemistry C, 113 (2009) 12811.
[23] N. Rahmani, R. Dariani, “Strain-related phenomena in TiO2 nanostructures spin-coated on porous silicon substrate.” Superlattices and Microstructures, 85 (2015) 504.
[24] A. Kumawat, S. Chattopadhyay, K. Prakash Misra, R. D. K. Misra, P. Kumari, “Micro-strain governed photoluminescence emission intensity of sol-gel spin coated Eu doped ZnO thin films.” Thin Solid Films, 761(2022) 139521.
[25] R. S. Dariani, Z. Nafari Qaleh, Thin Solid Films, “Microstructure characterization of TiO2 nanowires fabricated by thermal evaporation process.” 542 (2013) 192.
[26] S. Ramezani Sani, A. Sanei, Nanomaterials, “Microstructure Characterization of TiO2 Nanowires by Hydrothermal Method.” 44 (2020) 223.
[27] G. Madhu, Vipin C. Bose, K. Maniammal, A. S. Aiswarya Raj, V. Biju, “Microstrain in nanostructured nickel oxide studied using isotropic and anisotropic models.” Physica B, 421 (2013) 87.
[28]. G. K. Williamson, W. H. Hall, “X-ray line broadening from filed aluminium and wolfram.” Acta Metallurgica, 1 (1953) 22.
[29] W. C. Elmore, M. A. Heald, Physics of Waves, McGraw-Hill Book Company, USA, 1969.
[30] K. Keis and A. Roos, “Optical characterization of nanostructured ZnO and TiO2 films.” Optical Materials, 20 (2002) 35
Ramezani Sani et al./Journal of Interfaces, Thin films, and Low dimensional systems 7 (2) Winter & Spring (2024) 739-746
746
[31] L. Grabner, S. E. Stokowski, W. S. Brower, “NoPhonon 4T2g−4A2g Transitions of Cr3+ in TiO2.” Physical Review B, 2 (1970) 590.
[32] Z. K. Tang et al,, “Room-temperature ultraviolet laser emission from self-assembled ZnO microcrystallite thin films” Appled Physics Letters, 72 (1998) 3270.
[33] S. Shionoya, W. M. Yen (Eds.), Phosphor Handbook, Chemical Rubber, Cleveland, 1999.
[34]. Yan Cong, S. Bin Li, Shumei Yue, and Di Fan, “Effect of Oxygen Vacancy on Phase Transition and Photoluminescence Properties of Nanocrystalline Zirconia Synthesized by the One-Pot Reaction.” The Journal of Physical Chemistry C, 113 (2009) 13974