Controllable synthesis of ZnO nanorods supported by stainless steel mesh for photocatalytic degradation of organic pollutants

Document Type : Original Article

Authors

Department of Physical Chemistry and Nanochemistry, Faculty of Chemistry, Alzahra University, Tehran 19938-93973, Iran.

Abstract

In this research, zinc oxide (ZnO) nanorods were synthesized by the chemical bath deposition (CBD) method on steel mesh 400 for the photocatalytic decomposition of two organic pollutants: methylene blue (MB) dye and tetracycline (TC) antibiotic. Different parameters were studied, including the concentration of the nucleation solution, the number of deposition cycles, and the growth temperature to reach the optimal state of ZnO growth. The optimal sample with a growth time of 3 h at a temperature of 95 °C and a concentration of 5 mM zinc acetate as a nucleation solution was used for photocatalytic degradation tests. The diffuse reflectance spectroscopy (DRS) analysis showed an energy gap of 3.2 eV for ZnO nanorods. The photodegradation rate constants were 0.0121 and 0.0043 min-1 for MB and TC removal, respectively. Also, the mechanism for the photocatalytic degradation was studied to propose the charge generation and transfer pathway.

Keywords

Main Subjects

Article Title [Persian]

سنتز قابل کنترل نانومیله‌های ZnO بر روی زیرلایه مش فولاد ضد زنگ برای تخریب فوتوکاتالیستی آلاینده‌های آلی

Authors [Persian]

  • مرصع صمدی
  • یاسمن آلاوه

گروه شیمی فیزیک و نانوشیمی، دانشکده شیمی، دانشگاه الزهرا، تهران، ایران.

Abstract [Persian]

در این تحقیق، نانومیله‌های اکسید روی (ZnO) با روش رسوب حمام شیمیایی (CBD) بر روی مش فولادی 400 برای تجزیه فوتوکاتالیستی دو آلاینده آلی رنگ متیلن بلو (MB) و آنتی‌بیوتیک تتراسایکلین (TC) سنتز شدند. پارامترهای مختلفی از جمله غلظت محلول هسته‌زایی، تعداد چرخه‌های رسوب‌گذاری و دمای رشد برای رسیدن به حالت بهینه رشد اکسید روی مورد مطالعه قرار گرفتند. نمونه بهینه با زمان رشد 3 ساعت در دمای 95 درجه سانتیگراد و غلظت 5 میلی مولار روی استات به عنوان محلول هسته برای آزمایش های تخریب فوتوکاتالیستی استفاده شد. تجزیه و تحلیل طیف‌سنجی بازتابی منتشر (DRS) شکاف انرژی eV 3.2 را برای نانومیله‌های اکسید روی نشان داد. ثابت‌های سرعت تخریب نوری برای حذف MB و TC به ترتیب 0.0121 و 0.0043 بر دقیقه بود. همچنین، مکانیسم تخریب فوتوکاتالیستی برای پیشنهاد تولید بار و مسیر انتقال مورد مطالعه قرار گرفت.

Keywords [Persian]

  • نیمه هادی
  • نانومیله های اکسید روی
  • فوتوکاتالیست
  • تتراسایکلین
  • متیلن بلو
[1] H. Wang et al, “Visible-light-driven removal of tetracycline antibiotics and reclamation of hydrogen energy from natural water matrices and wastewater by polymeric carbon nitride foam.”, Water Research, 144 (2018) 215.
[2] H. Al Abdulgader et al, “Hybrid ion exchange–Pressure driven membrane processes in water treatment: A review.”, Separation and Purification Technology, 116 (2013) 253.
[3] M. S. Mauter et al, “The role of nanotechnology in tackling global water challenges.”, Nature Sustainability, 1 (2018) 166.
[4] T. O. Durotoye et al, “Impact assessment of wastewater discharge from textile industry in Lagos, Nigeria.”, Cogent Engineering, 1 (2018) 1531687.
[5] Z. Hu et al, “Efficiency evaluation with feedback for regional water use and wastewater treatment.”, Journal of hydrology, 562 (2018) 703.
[6] M. Sheikh et al, “Application of ZnO nanostructures in ceramic and polymeric membranes for water and wastewater technologies: a review.”, Chemical Engineering Journal, 391 (2020) 123475.
[7] A. Monteoliva-García et al, “Effects of carrier addition on water quality and pharmaceutical removal capacity of a membrane bioreactor–advanced oxidation process combined treatment. Science of the Total Environment, 708 (2020): 135104.
[8] R. K. Upadhyay et al. “Role of graphene/metal oxide composites as photocatalysts, adsorbents and disinfectants in water treatment: a review.”, RSC Advances, 4 (2014) 3823.
[9] K. M. Lee et al, “Recent developments of zinc oxide based photocatalyst in water treatment technology: a review.”, Water Research, 88 (2016) 428.
[10] S. H. Chan et al, “Recent developments of metal oxide semiconductors as photocatalysts in advanced oxidation processes (AOPs) for treatment of dye waste‐water.”, Journal of Chemical Technology & Biotechnology, 86 (2011) 1130.
[11] M. Samadi et al, “Recent progress on doped ZnO nanostructures for visible-light photocatalysis.”, Thin Solid Films, 605 (2016) 2.
[12] M. Samadi et al, “Design and tailoring of one-dimensional ZnO nanomaterials for photocatalytic degradation of organic dyes: a review.”, Research on Chemical Intermediates, 45 (2019) 2197.
[13] R. Molinari et al, R, Photocatalytic membrane reactors: Configurations, performance and applications in water treatment and chemical production, In Handbook of membrane reactors, Woodhead Publishing, 2013, pp. 808-845.
[14] Y. Wang, ZnO nanorods for gas sensors, In Nanorods and Nanocomposites , IntechOpen 2020, pp. 35-55.
[15] M. R. Almamari, Mohammed Rashid et al, “Some distinct attributes of ZnO nanorods arrays: Effects of varying hydrothermal growth time.”, Materials, 15 (2022) 5827.
[16] M. Samadi et al, “Synergism of oxygen vacancy and carbonaceous species on enhanced photocatalytic activity of electrospun ZnO-carbon nanofibers: Charge carrier scavengers mechanism.”, Applied Catalysis A: General, 466 (2013) 153.
[17] J. B. Coulter et al, “Assessing Tauc plot slope quantification: ZnO thin films as a model system.”, Physica Status Solidi (b), 255 (2018) 1700393.
[18] M. Samadi et al, “Visible light photocatalytic activity of novel MWCNT-doped ZnO electrospun nanofibers.”, Journal of Molecular Catalysis A: Chemical, 359 (2012) 42.