[1] H. Mutuk, “Mass Spectra and Decay constants of Heavy-light Mesons: A case study of QCD sum Rules and Quark model.” Advances in High Energy Physics, 20 (2018) 8095653. doi.org/10.1155/2018/8095653
[2] L. Dong, Y. Guo et al., “Effective Debye screening mass in an anisotropic quark-gluon plasma.” Physical Review D, 104 (2021) 096017. doi.org/10.1103/PhysRevD.104.096017
[3] A. Mocsy, “Potential models for quarkonia.” The European Physical Journal C, 61 (2009) 710. doi.org/10.1140/epjc/s10052-008-0847-4
[4] A. N. Ikot et al., “Superstatistics of Schrodinger equation with pseudo-harmonic potential in external magnetic and Aharanov-Bohm fields.” Heliyon, 6 (2020) e03738. doi.org/10.1016/j.heliyon.2020.e03738
[5] P. Gubler, T. Song, S. Lee, “D-meson mass and heavy quark potential at finite temperature.” Physical Review D, 101 (2020) 114029-39. doi.org/ 10.1103/PhysRevD.101.114029
[6] H. Mansour, and A. Gamal, “Bound state of Heavy Quarks using a general polynomial potential.” Advances in High Energy Physics, 65 (2018) 1234. doi.org/10.1155/2018/7269657
[7] Abu-Shady, T. Abdel-Karim, E. Khokha, “Binding energies and dissociation temperatures of heavy quarkonia at finite temperature and chemical potential in the n-dimensional space.” Advances in High Energy Physics, 2018 (2018) 7356843. doi.org/10.1155/2019/4785615
[8] D. H. Lehmer, “On the Maxima and Minima of Bernoulli Polynomials.” American Mathematical Monthly, 47 (1940), 533–538. doi.org/10.1080/00029890.1940.11991015
[9] Zhi-Wei Sun, Hao Pan, “Identities concerning Bernoulli and Euler polynomials.” Acta Arithmetica, 125 (2006) 21–39.
[10] M. J. Ambrosio, et al., “Mathematical properties of generalized Sturmian functions.” Journal of Physics A, Mathematical and Theoretical, 45 (2012) 21. doi.org/101088/1751- 8113/45/1/015201
[11] B. R. Johnson, “On a connection between radial Schrödinger equations for different power law potentials.” Journal of Mathematical Physics, 21 2640 (1980). doi.org/10.1063/1.524378
[12] M. Dienykhan, G. Efimov, G. GanboldS, N.Nedelko, “Oscillator Representation in Quantum Physics.” first ed., Springer-Verlag, DE, (1995); W. Greiner, S. Schramm, E.Stein, Quantum chromodynamics, Springer Science & Business Media; 2007.
[13] R Rosenfelder, “Path Integrals in Quantum Physics.” arXiv:1209.1315v2 [nucl-th], (2012).
[14] R. P. Feynman, A.R. Hibbs, “Quantum Mechanics and Path Integrals.” Dover Publications Inc, (2010).
[15] J. Kelley, J. Leventhal, “Ladder Operators for the Harmonic Oscillator:Problems in classical and quantum mechanics.” first ed., Publishing Springer- Verlag, DE, (2017)
[16] M. E. Peskin, D. V. Schroeder, “An Introduction To Quantum Field Theory.” CRC Press; 1st edition (2019)
[17] P. A. Zyla et al., Particle Data Group, Progress of Theoretical and Experimental Physics, 2020 (2020) 083C0.
[18] G. Boyd, J. Engels, F. Karsch et al., “Thermodynamics of SU(3) lattice gauge theory.” Nuclear Physics B, 469 (1996) 419. doi.org/10.1016/0550-3213(96)00170-8
[19] Bernard, T. Burch, E. Gregory et al., “QCD thermodynamics with three flavors of improved staggered quarks,” Physical Review D, 71 (2005) 034504.
[20] R. N. Faustov, V. O. Galkin, A. V. Tatarintsev, A. S. Vshivtsev, “Spectral problem of the radial Schrödinger equation with confining power potentials.” Theoretical and Mathematical Physics, 113 (1997) 1530. doi.org/10.1007/BF02634513
[21] R. Kumar, F. Chand, “Series solutions to the Ndimensional radial Schrödinger equation for the quark-antiquark interaction potential.” Physica Scripta, 85 (2012) 055008.
doi.org/10.1088/0031-8949/86/02/027002
[22] F. Al-Jamel and H. Widyan, “Heavy quarkonium mass spectra in a Coulomb field plus quadratic potential using Nikiforov-Uvarov method.” Applied Physics Research, 4 (2012) 94. doi.org/10.5539/apr.v4n3p94
[23] I. Ahmadov, C. Aydin, and O. Uzun, “Bound state solution of the Schrödinger equation at finite temperature.” Journal of Physics Conference Series, 1194 (2019) 012001. doi.org/10.1088/1742-6596/1194/1/012001