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This paper studies the important concepts in the fundamental optimization of 
mass and thermal properties of strong interactions based on quantum 
approximate operators. It explores and analytically calculates the radial part of 
the Schrödinger equation at finite temperature using the two intertwined spaces 
based on the Wick ordering method in the Bernoulli Potential. We provide 
analytical expressions for the ground state energy eigenvalues to define the 
zeroth approximation. We use a combination of the mathematical series terms 
(Bernoulli Serie) with the spins dependent part on the modified potential. 
Bernoulli potential refers to some of the potential types that are returned to the 
Bernoulli Serie. The method presented in this study allows us to rewrite some 
of the exponential potentials simply to even power levels in the Bernoulli series. 
Given that the Hulthen potential is a modified form of main hadronic interaction 
potentials, it is used to calculate the bound state mass and properties of hadronic 
atoms such as 𝜋-atoms, 𝜅-atoms or various hadronic structures with 
positive/negative and heavy/light quark bound states such as 

𝐷௦
ା, 𝐵

ା, 𝐵 
ା, 𝐷ା , 𝐷 

∗ା
 at finite temperatures. The main goal of this research is 

on the combined quantum operators and two intertwined spaces within the 
Bernoulli expansion to determine the best approximation of upsilon meson 
mass and thermal properties. 

 

1 Introduction 
 

 In recent years, theoretical physicists have become 
increasingly interested in the study of the mass and 
thermal properties of hadronic-bound states [1]. This is 
because it is necessary to investigate fundamental and 
experimental data and most efficiently, it is made 
feasible by the radial part of the Schrödinger equation, 
which provides the necessary details to characterize the 

bound system of elementary particles under new 
investigation. The study of bound states of two, three, 
and more quarks exacerbations, in a classical limit and 
a high-temperature environment within the infinite 
temperature, is important for understanding the 
behavior of exotic bound states of quarks near the 
deconfinement temperature in high energy interacting 
media and environments. The behavior of these states 
near the deconfinement temperature is incalculable and 
unclear, and various models present and estimate the 
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approximation mass spectra and eigenenergy values by 
increasing, or decreasing with temperature increments. 
In addition, the color screening radius (Deby mass, 
Debye-Hϋckel length), below which binding becomes 
impossible, plays a fundamental contribution in 
determining the properties of these hadronic states at 
finite temperatures [2]. In this research, we try to define 
the interactions of the upsilon meson-bound state which 

is like 𝐷௦
ା, 𝐵

ା, 𝐵 
ା, 𝐷ା, 𝐷 

∗ା
bound systems. Potential 

interaction of upsilon meson bound states which has to 
comprise Coulomb and confining terms, is presented in 
the form of Bernoulli series while the main fundamental 
quantum particle behavior gives the harmonic oscillator 
potential [3-5].  

 These internal-external potentials play a key role in the 
upsilon meson coupled state, including the mixture of 
needing properties, which have been extensively 
discussed in the literature. It is worth noting that the 
development of new potential models is crucial for 
understanding the properties of hadronic bound states 
and other quantum systems. It is indeed true that the 
behavior of selective potentials in quantum field theory 
and quantum mechanics has been very successful in 
describing the meson-bound state data at finite 
temperatures. However, to take into account the 
relativistic effects, it is necessary to consider relativistic 
mass and spin-dependent potentials in the Schrödinger 
equation. The exact solubility of some potentials within 
the Schrödinger equation is of great importance as it 
allows analytical calculation of all spectra and energy 
eigenvalue of radial and orbital excited states. While 
some potentials can be solved exactly, others require 
approximation or numerical methods. For instance, the 
Bernoulli potential which consists of exponential-type 
potentials, has been investigated here. Furthermore, we 
have mentioned the  quantum harmonic oscillator as a 
main unique internal interaction, is an important 
application and model when describing the bound state 
hadronic particles. As we know, harmonic oscillator 
eigenvalue problems can be solved analytically when 
the exact solution of a problem cannot be found, it is 
appreciable to use approximation methods such as 
perturbation theory. The perturbation theory approach 
has been adopted in several ways to calculate and 
determine the energy eigenvalues of the ground and 
excites states of coupled particles.  By using a harmonic 
oscillator method and boundary conditions of the bound 
state, the quano-mechanical properties of the bound 

state such as mass and thermal characteristics can be 
solved. Therefore, these perturbed harmonic oscillators 
may be calculated using computational and analytical 
methods with theoretical contributions. In this article, 
we use the two intertwined spaces based on the Wick 
ordering method among other approaches, which has 
significant contributions to approximating and 
developing mathematical techniques for finding the 
eigenvalues and eigenfunctions of quantum systems 
with harmonic oscillator main potential and external 
potential in recent years. As we know the Wick ordering 
method is a useful analytical method for solving and 
approximating the radial Schrödinger equation in 
quantum mechanics. It is based on the idea of separating 
the potential into a real part and an imaginary part, 
which is then treated separately. The real part of the 
potential can be solved exactly, while the imaginary part 
can be treated as a perturbation to the real part. This 
method has been successfully applied to study hadronic-
bound systems in various conditions, including the 
upsilon meson-bound state in this research. Also, in the 
analysis of the characteristic of the bound states, a 
transformation from one space to another space is 
considered to obtain the answer. These intertwined 
spaces based on the Wick ordering method are a useful 
analytical method for solving and approximating the 
radial Schrödinger equation, and it has been 
successfully applied to study hadronic bound systems in 
various conditions. In particular, this method can be 
used to analytically resolve the multidimensional 𝑛-
dimensional radial part of the Schrödinger equation for 
the real part of the potential, and study upsilon meson 
bound state or quarkoniums dissociation in different 
states and different media such as finite temperature 
environment. The two intertwined spaces based on the 
Wick ordering method in the presence effect of external 
electric and magnetic fields have also been applied to 
solve the radial Schrödinger equation.  The purpose of 
this research is to use the perturbation and approximate 
solution method to calculate the zero-energy correction 
and obtain the generalized energy eigenvalues for the 
quantum harmonic oscillator with Bernoulli potential. It 
explores the radial Schrödinger equation at exact 
temperature applying and implementing the 

transformation and intertwined two spaces method for 
potential part. We provide analytical expressions for the 
energy eigenvalues and mass spectrum. The obtained 
results for upsilon meson agree with current 
experimental data for different quantum numbers [6,7]. 
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The numerical analysis indicates a distinct behavior for 
different quantum numbers concerning temperature 
dependence. Our temperature-dependent results for the 
ground states are determined at temperatures 𝑇 =

30, 70, 90 (𝑀𝑒𝑉). 

 The remainder of this research is laid out in the 
following manner: Section 2, introduces the Bernoulli 
generating function and Bernoulli potential. Section 3, 
introduces the Sturmian representation where two 
intertwined spaces are presented. In Section 4, the Wick 
ordering method is described. In Section 5, the mass 
spectrum of upsilon meson, with relativistic corrections 
at finite temperature is defined. In section 6, the 
numerical calculation is shown. Finally, in Section 7, 
concluding remarks are provided. 

2 The Bernoulli generating function 

 The basis of the mathematical concept of Bernoulli 
potential under the Bernoulli numbers in 1755 by 
Leonhard Euler was established. Euler, based on the 
concept of a generating function described the Bernoulli 

numbers as a coefficient of the function 𝐵(𝑟) =


ೝషభ =

∑


!

ஶ
ୀ  [8,9]. If we suppose two series, first or main: 

𝑓(𝑟) = ∑ 𝑎𝑟ஶ
ୀ  with coefficient {𝑎} and the second 

series: 𝑔(𝑟) = ∑ 𝑏
 

!
ஶ
ୀ , with the coefficient {𝑏}. 

Then the exponential functions: can be generated by the 
coefficient  𝑖! {𝑎} = {𝑛! 𝑎}. The function that is the 
main generating function 𝑓(𝑟) is the exponential 
generating function of 𝑔(𝑥). Therefore, the function 

𝐵(𝑟) =


ೝషభ based on the Maclaurin series expansion 

can be calculated by the i’s order derivatives 

𝐵(𝑟) =
𝑟

𝑒ିଵ
= 

1

𝑖!

𝑑൫ 𝑟൯

𝑑𝑟

ஶ

ୀ

= 𝐵 + 𝐵ଵ𝑥 + 𝐵ଶ

𝑟ଶ

2!
+ +𝐵ଷ

𝑟ଷ

3!
+ 𝐵ସ

𝑟ସ

4!
+ ⋯

= 1 + ൬−
1

2

 

൰ 𝑥 + ൬
1

6

 

൰
𝑥ଶ

2!
+ ൬−

1

30

 

൰
𝑥ସ

4!

+ ൬
1

42

 

൰
𝑥

6!
+ ⋯.                                                      (1) 

The coefficient of this series presents the Bernoulli 
numbers and equivalents to 

𝐵 = 1, 𝐵ଵ = −1/2, 𝐵ଷ = 0, 𝐵ସ = −1/30, 𝐵ହ = 0, 

𝐵 = 1/4, 𝐵 = 0, 𝐵଼ = −1/30, ⋯ and all the 
Bernoulli numbers have properties: 

1- 𝐵 is a rational number. 
2- 𝐵ଶhas alternates sign of 𝑖 ≥ 1 then     𝐵ସ < 0 and 

     𝐵ସାଶ > 0. 
3- 𝐵ଶାଵ = 0, for all 𝑖 ≥ 1. 
4- |𝐵ଶ| increases very quickly. 

5- 𝑐𝑜𝑡 (𝑟) = ∑ (−1) ଶమ( ଶ )మషభ

(ଶ)!
ஶ
ୀ   for |𝑟| < 𝜋. 

6- All the odd Bernoulli numbers are zero except 𝐵ଵ. 
 Each exponential potential that is transforming to the 
Bernoulli series can be used to describe bound state 
interactions by greater orders of 𝑟. As it is known, odd 
powers greater than one are zero, and in this way, the 
approximation with the Bernoulli series with even 
degrees will be determined. This subject is very 
significant for approximation in interaction potentials 
and calculation of eigenvalues and mass spectrum in 
Schrödinger's equation, which is discussed in this 
article . 

3 Sturmian representation for two 
intertwined spaces  

 We present an expansion for the coupled-body 
Schrödinger problem. It can describe the bound state 
properties of particles based on the Sturmian 
representation. As we know, a specific set of 
eigenfunctions of the radial Schrödinger equation, 
known as the Sturmian function, have proven to be a 
valuable tool in addressing certain coupled body 
problems related to the radial Schrödinger wave 
functions.  

The Sturmian function 𝑆(𝑟): 


−

ℏଶ

2𝜇

𝑑ଶ

𝑑𝑟ଶ
+

𝑙(𝑙 + 1)ℏଶ

2𝜇𝑟ଶ
+

+𝛼𝑈 − 𝐸



 

𝑆(𝑟) = 0.      (2) 

 
is the solution of the radial part of the Schrödinger 
equation [10]. These functions have a notable benefit 
over Schrödinger functions when used as a basis for 
expansion, since they create a complete set that is not 
continuous, regardless of the potential between 
particles. When choosing a different expansion basis of 
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intertwined spaces for the coupled-body state, three key 
conditions must be satisfied. Firstly, the series must 
approach convergence at a reasonable rate. Secondly, 
the continuum and its inherent complexity must be 
avoided to justify the use of the new series over a usual 
eigenvector and eigenfunction series. Lastly, the 
boundary constraints set and restrictions imposed by the 
new functions must be elementary and uncomplicated. 
For instance, quantum harmonic oscillator wave 
functions satisfy the second condition and requirement, 
but at the expense of losing and overburdening the 
simplicity of their asymptotic behavior of boundary 
conditions, which makes synthesizing an outgoing 
spherical symmetric wave difficult. However, we have 
discovered a set of functions that satisfies the second 
and third requirements. Rosner, Quigg, and Gazeau 
were dealing with the same topic. They have drawn 
attention to the fact that the origin of the Sturmian 
representation and changing the independent coordinate 
can describe coupled-body problems related to the 
radial Schrödinger equation. The mechanism of 
transforming the independent parameter has long been 
a useful strategy to solve the radial Schrödinger 
equation with different type potentials like 𝑈(𝑟) ≈

∑ 𝑟ఈ power-law potential especially with the bound 
state interaction in a central potential. The power-law 
potential with a variable exponent is a flexible resource 
that can be utilized to analyze the actions of systems 
where particles interact with one another, and its 
usefulness extends to various areas and branches of 
physics, including condensed matter physics, 
astrophysics, and fundamental particle physics. Here 
are some specific examples of its applications. This type 
of potential has been used to study the behavior of 
quarks and gluons in the quark-gluon plasma, and 
hadronic strong interaction which is a state of matter 
that existed in the early universe and can be recreated in 
particle accelerators. In this article, the study of 
coupled-body involves the use of the Bernoulli 
potential, and this revision clarifies that the Bernoulli 
potential was useful in the study of coupled-body 
upsilon meson. Based on Section 1, the subject of the 
paper is referred to as the Bernoulli potential which is a 
power-law potential with a variable exponent (𝛼 ≥ 1).  
The bound state issues can be naturally explained using 
the origin of the Sturmian representation and the 
equivalence transformed space for coupled-body. We 
have investigated this concept further within the 
framework of exponential Bernoulli potentials, which 

can be generalized to potentials with multiple powers of 
𝑟, as  

𝑈(𝑟) = 𝐵 + 𝐵ଵ𝑟 + 𝐵ଶ

𝑟ଶ

2!
+ 𝐵ଷ

𝑟ଷ

3!
+ 𝐵ସ

𝑟ସ

4!
+ ⋯.                                                (3) 

In cases where exact solutions for exponents ∑ 𝑟ఈ are 
not available, a more general equivalence emerges as a 
change of variable in the wave function 

𝑅(𝑟) ≈ 𝑒ି() ≈ 𝑒ିభశ
, 𝑟  = (𝑐𝑞)ఉ,   𝛽 = 2𝜌

= 2 ൬
1

1 + 𝜎
൰ ,  𝜎 ≥ 0,                  (4) 

which can map the nonrelativistic radial Schrödinger 
equation and its solutions for 𝑉(𝑟) ≈ ∑ 𝑟ఈ potential 
types. Parameter 𝑐 is constant. For different values of 𝛼, 
the coupled system has to create bound states, with 
boundary conditions on the wave functions being linked 
by this transformation. If we focus on long distances 
limit and using analytical methods, we can typically 
determine the asymptotic properties and long-term 
behavior of the wave function 

𝑅 ቀ𝑟൫(𝑐𝑞)ఉ൯ቁ ≈ 𝑒
ିቀ൫()ഁ൯ቁ ≈ 𝑒ି()

మቀ
భ

భశ
ቁ

, (5) 

 
 for 𝒓 → ∞, where 𝒂(𝒓) can be obtained for certain 
classes of potentials. For the large distances potentials 
such as Coulomb or Yukawa-type potentials (𝛼 ≤ 0), 
𝜎 = 0, for external harmonic potential (𝛼 = 2), 𝜎 = 0, 
anharmonic potential (𝛼 > 2), 1 < 𝜎 ≤ 2 and Cornell 
potential 𝜎 = 1. From the previous references to 
physics, we have realized that  the concepts of harmonic 
oscillators hold significant relevance across various 
areas of physics, with the former being a crucial tool for 
modeling physical systems. The harmonic oscillator 
analogy is extensively employed in attempts to solve 
quantum mechanical problems, as many physical 
scenarios can be mapped onto a harmonic oscillator 
with appropriate boundary conditions. This stems from 
the fact that the harmonic oscillator eigenvalue problem 
has an analytic solution, thus allowing more accurate 
results and better approximation for solutions. We note 
that one has studied and analyzed potentials with an 
adjustable number of power factors of  ∑ 𝑟ఈ, and has 
used a variable change to interpret the Sturmian 
equation and two intertwined spaces in the context of 
conventional physical radial Schrödinger equations. We 
also mention that the bound states with a based-on 
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quantum harmonic oscillator behavior (principal 
harmonic potential) can be tackled using algebraic 
methods, such as the Wick ordering method. In the 
following paragraphs, our examination begins with the 
radial Schrödinger equation that applies to space with 
𝑁-dimensions.  

 

4 Radial Schrödinger equation in two 
intertwined spaces based on Wick 
ordering    

 In this study, theoretically and approximately, the 
bound state system solution and eigenvalues 
answered by the 𝑛-dimension radial Schrödinger 
equation in two intertwined spaces based on Wick 
ordering has been described. For this opinion, the 
two intertwined spaces based on the Wick ordering 
method are used. We have to predict the relativistic 
mass spectrum using the mechanism of intertwined 
spaces based on normal order (when all raising 
operators are to the left of all lowering operators) 
that is described in this paragraph and the quantum 
field theory method that will be presented in the 
next paragraph. Our start point is the radial 
Schrödinger equation in 𝑛-dimension space which 
describes the interaction of two particles with the 
masses 𝑚 , 𝑚 in the potential 𝑈(𝑟) that lead us 

to create the stable bound state: 

ቆቊ−
ℏଶ

2𝑚

𝑑

𝑑𝑟
𝑟ିଵ

𝑑

𝑑𝑟
ቋ

+ ቊ−
ℏଶ

2𝑚
𝑟ଵି

𝑑

𝑑𝑟
𝑟ିଵ

𝑑

𝑑𝑟
ቋ

+
ℏଶℓ(ℓ + 𝑛 − 2)

2𝑚𝑟ଶ
+

ℏଶℓ(ℓ + 𝑛 − 2)

2𝑚𝑟ଶ
+  𝑈(𝑟)

− −𝐸൫𝑚,𝑚 ൯൱ 𝑅(𝑟) = 0,                                    (6) 

                                    
then  

൭
ℏଶ

2𝜇
∆ +

ℏଶℓ(ℓ + 𝑛 − 2)

2𝜇
−𝑊(𝑈,E)൱ 𝑅(𝑟)

= 0.                                                  (7) 
 

Equation (7), based on the Laplacian operator 

effect functions 𝑅(𝑟) and ቆ𝑟
భష

మ 𝑅(𝑟)ቇ in 𝑛-

dimension space [11]  

∆=
𝑑ଶ

𝑑𝑟ଶ
+

𝑛 − 1

𝑟

𝑑

𝑑𝑟
−

ℓ (ℓ + 𝑛 − 2)

𝑟ଶ
,

∆𝑅(𝑟) = ∆ ቆ𝑟
ଵି

ଶ 𝑅(𝑟)ቇ.           (8) 

 
One can present Eq. (7) as follows 

ℜᇱᇱ −
𝐿(𝐿 + 1)

𝑟ଶ
ℜ +

𝑊(𝑈,E)

𝑟ଶ
ℜ = 0,                  (9) 

where ℜ(𝑟) = 𝑟
భష

మ 𝑅(𝑟), 
ଵ

ఓ
=

ଵ


+

ଵ

ೕ
  and 𝜇 is the 

reduced mass, ℓ is the angular momentum quantum 
number, 𝐿 is a parameter that can be as a new auxiliary 
space i.e., we define the radial Schrödinger equation in 
the new 𝐿-dimension space which is linked to the 𝑛-

dimension space 𝐿 =
ଶℓାିଷ

ଶ
, and              𝐿(𝐿 + 1) =

ସℓమାସℓ(ିଶ)ାమିସାଷ

ସ
. As we introduced in paragraph 2, 

Eq. (5), by changing [11, 12] 

𝑟 = (𝑐𝑞)ଶఘ, ℜ(𝑟) → ℜ((𝑐𝑞)ଶఘ),                             (10) 

 
this means that always maps 𝑟 = 0 into 𝑞 = 0 and maps 
𝑟 = ∞ into 𝑞 = ∞, and 𝑐-is recalling constant. Based 
on two intertwined spaces is transformed by relations 

𝑑

𝑑𝑟
=

1

𝜌𝑐ఘ
𝑞ଵିఘ

𝑑

𝑑𝑞
 

𝑑ଶ

𝑑𝑟ଶ
= ൬

1

𝜌𝑐ఘ
𝑞ଵିఘ

𝑑

𝑑𝑞
൰ ൬

1

𝜌𝑐ఘ
𝑞ଵିఘ

𝑑

𝑑𝑞
൰ = 

1

(𝜌𝑐ఘ)ଶ
𝑞ଵିఘ ൭(1 − 𝜌)𝑞ିఘ

𝑑

𝑑𝑞
+ 𝑞ଵିఘ

𝑑ଶ

𝑑𝑞ଶ
൱ 

Hence, the radial Laplacian in an 𝑛-dimensional 
Riemannian space is 

𝛥 =
𝑑ଶ

𝑑𝑟ଶ
+

𝑛 − 1

𝑟

𝑑

𝑑𝑟
→ 

𝛥 =
𝑑ଶ

𝑑𝑞ଶ
+

𝒟 − 1

𝑞

𝑑

𝑑𝑞
, 

and then Eq. (8) reads 
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൭
𝑑ଶ

𝑑𝑞ଶ
−

1 − 2𝜌 + 𝑛𝜌 
 

𝑞

𝑑

𝑑𝑞
−

ℓ(ℓ + 𝑛 − 2)𝜌ଶ

𝑞ଶ

+ 4𝜌ଶ𝑐ସఓ𝑞ସఓିଶ𝑊((𝑐𝑞)ଶఘ)൱ ℜ((𝑐𝑞)ଶఘ)

= 0,                                                                           (11) 

𝐷 = 2 − 4𝜌 + 2𝑛𝜌 and then we supposed 𝑐 is a real and 
positive number in this article and equivalent to 1. After 
some calculations like Eq. (8) with new axillary 𝐷-

dimension space ℜ((𝑞)ଶఘ) → 𝑞
భషವ

మ 𝛷, we define 

𝛷ᇱᇱ −
𝐿(𝐿 + 1) − ℓ(ℓ + 𝑛 − 2)𝜌ଶ

𝑞ଶ
𝛷

+ 4𝜌ଶ𝑞ସఓ𝑊((𝑞)ଶఘ)𝛷 = 0 
where 

𝐿 =
4ℓ𝜌 + 𝐷 − 3

2
, 

 

𝐿(𝐿 + 1)

=
16ℓଶ𝜌ଶ + 16ℓ𝜌ଶ(𝑛 − 2) + (𝐷 − 2)ଶ − 1.

4
 

 
5 Coupled-state in QFT 

 The total energy and mass of bound states can be 
effectively determined within nonrelativistic quantum 
mechanics when an appropriate interaction potential is 
selected. Despite this, the nonrelativistic radial 

Schrödinger equation 𝐻𝑅(𝑟) = 𝐸ℓ(𝜇)𝑅(𝑟) which 
provides and employs mathematical techniques for 
accurate description of bound states is no longer 
sufficient for interpreting contemporary experimental 
results from hadronic physics, as relativistic corrections 
must be considered. Despite this, the nonrelativistic 
Schrödinger equation remains a dependable instrument 
for investigating bound state energy and its mass. In 
these instances, actual relativity-based revisions are 
minimal, and the theoretical challenge is reduced to 
obtaining relativity-based revisions for the 
nonrelativistic interaction potential based on Feynman's 
functional path integral and within quantum field theory 
and quantum electrodynamic ideas [13, 14]. In this 
article, we try to describe the inter-hadronic potential 
with relativity-based revisions through the 
nonrelativistic limit. This method studies primarily 

focused on relativistic corrections within perturbation 
theory for the interaction potential. It is well known that 
calculating the total binding energy and wave functions 
of bound states consisting of multiple particles from the 
relativistic Schrödinger equation is nearly impossible 
from a mathematical standpoint. Hence, we define 
incorporating Einsteinian adjustments into the 
determination of relativistic bound state properties 
using Feynman's functional path integral and quantum 
field theory formalism. As we know, the bound state 
mass with the required quantum numbers of the 
respective currents is determined by the asymptotic 
behavior and limiting properties of the correlation 
function [15]. The correlation function, described in 
terms of the Green function and is represented as a 
functional Feynman path integral in nonrelativistic 
quantum mechanics, which enables the necessary 
asymptotic behavior of wave function at large distances, 
and accurately performs the averaging and integrating 
over the external field. In this case, the mass spectrum 
of coupled state in the radial Schrödinger equation is the 
constituent mass which differs from the mass of the 
initial state of the coupled system, and also the resulting 
exchange of the gauge field is determined by the 
Feynman diagram that we know as interaction potential. 
Therefore, as a result, the constituent mass of the 
particles can explain and present the relativistic 
corrections to the total Hamiltonian. Therefore, we start 
with the issue of the flow of charged particles in the   
arbitrary background field 𝐹(𝑟) with 𝑈(𝑟)the 
Bernoulli potential type and present Green's function 
𝐺 

(𝑟, 𝑟 |́𝐹) of filed. In quantum field theory, Green's 

function (also known as a propagator) is a mathematical 
tool used to describe the behavior of particles or fields 
in terms of correlations between different points (𝑟 →

𝑟 )́ in spacetime. Green's function helps us to 
understand how a disturbance in one part of the system 
propagates through spacetime to affect other parts of the 
system. In quantum mechanics and quantum field 
theory Green's function 𝐺 

(𝑟, 𝑟 |́𝐹) is a solution to the 

Schrödinger equations for a given field, subject to 
specific boundary conditions [16] 

[(𝑖𝜕 + 𝑔𝐹(𝑟 )൯
ଶ

+ 𝑚ଶ]𝐺 
(𝑟|𝐹)

= 𝛿(𝑟 − 𝑟 )́.                                (12) 

                                 
Here, 𝑟 and 𝑟 ́ are spacetime points and 𝑔 is a coupling 
constant. As we know Green's functions are typically 
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used to compute the correlation functions, which are the 
basic building blocks for calculating scattering 
amplitudes, cross-sections, and interaction properties in 
particle physics. Computing Green's functions for 
specific fields and interactions is a crucial step in 
understanding the behavior of particles and fields in 
quantum field theory and in making predictions for 
high-energy physics experiments. Therefore, we 
present the behavior of particles in the external field 
based on the current and Green's function. The current 

of a scalar charged particle is 𝐽(𝑟) = 𝑅ା(𝑟)𝑅ି(𝑟), 
and then 

            

𝐽(𝑟) = −(−𝑖)𝑒 න 𝑑ଷ𝑟 �́�భ
(𝑟,𝑟 |́𝐹)𝛻  ́ 𝜑 ́(𝑟 )́, (13) 

 
where 𝑒 is the charge of particles and 𝜑(𝑟 ) is a scalar 
Gaussian potential field. The scalar product current of 
two scalar charged particles is 

 
〈𝐽(𝑟)𝐽(𝑟 )́〉 = 〈𝑅ା(𝑟)𝑅ି(𝑟) ∙ 𝑅ା(𝑟 )́𝑅ି(𝑟 )́〉, (14)                  

is equivalent to  〈𝐺
(𝑟|𝐹)𝐺ೕ

(𝑟 |́𝐹)〉,  

where 

𝐺,ೕ
൫𝑟,𝑟; 𝑟 ́,𝑟 ́൯

= 〈0ห𝑇𝜑(𝑟)𝜑(𝑟)𝜑(𝑟 ́)𝜑(𝑟 ́)ห0〉,                   (15) 
is the propagator or kernel function of a scalar-charged 

particle with mass 𝑚 in the arbitrary external field, 𝑇 is 
the time-ordered product of operators. The Green's 
function in the conventional form can determine the 

correlators by averaging over the arbitrary external field 
𝐹(𝑟) and determine the loop function (polarization 
function) as follows 

П(𝑟 − 𝑟 )́ = 〈𝐽(𝑟)𝐽(𝑟 )́〉

= 〈𝐺
(𝑟|𝐹)𝐺ೕ

(𝑟 |́𝐹)〉.      (16) 

Hence, the polarization function of two scalar particles 
with masses 𝑚, 𝑚 reads 

П(𝑟 − 𝑟 )́ = 〈𝐺
(𝑟,𝑟 ́|𝐹) ∙ 𝐺ೕ

(𝑟,𝑟 |́𝐹) 〉

= −2𝑖  න
𝑑ଷ𝑟

(2𝜋)ଷ
𝐺

(𝑟,𝑟 |́𝐹) ∙ 𝐺ೕ
(𝑟 ,𝑟 |́𝐹). (17)            

 Now, one can formulate a variational method that will 
be used in determination of the Green's function and the 

polarization function based on Feynman's functional 
path integral form and define them as follows [13,16]; 
one can propose the functional integral  

𝐺(𝑟,𝑟 |́𝐹) = න 𝑑𝜎𝑒ି[ఝ] , 

 where 

𝑑𝜎 =
1

𝑁
𝛿𝜑𝑒൛ି.ହ ∫ ∫ ௗௗ ఝ́()ீషభ(, ́)ఝ( )́ൟ,       (18) 

                        

where 𝛿𝜑 is the functional differential. 𝑁 is the 
normalization scaling coefficient which can be defined 
from the normalization condition ∫ 𝑑𝜎 = 1, 𝐺ିଵ is the 

differential operator. 𝐺  (𝑟,𝑟 |́𝐹) is the Green’s function 
and define by  

න 𝑑𝑟 �́�ିଵ(𝑟,𝑟 )́𝐺  (𝑟 ́,𝑟) = 𝛿(𝑟 − 𝑟 )́ 

 and then  

𝐺(𝑟,𝑟 |́𝐹) =
ଵ

ேෙ
𝛿𝜑𝑒൛ି.ହ ∫ ௗ൫ఝ()൯ మି[ఝ]ൟ.     (19)           

With the condition 𝐺(0) = 1 we can define 𝑁ෙ as a 
constant parameter. After some algebraic representation 
with the variational parameters 𝑞,𝑠 the functional 
integral 𝐺(𝑟,𝑟 |́𝐹) is presented in the following way 

𝐺(𝑟,𝑟 |́𝐹) ≥ 𝑒{ெ ()}.                                          (20) 
We know, the coupled system’s mass spectrum should 
explain in relativistic quantum theory as relations 𝑀 =

−lim||⟶ஶ|𝑟|ln𝛱(𝑟), where 𝛱(𝑟) =

(⟨𝐺ଵ(𝑟)|𝐺ଶ(𝑟)⟩)[12], so the upper estimation for 𝑀(𝑔) 
is 𝑀(𝑔) ≤ 𝑀ା(𝑔): 

𝑀ା(𝑔)

= 𝑚𝑖𝑛 ൝−0.5  𝑙𝑛(1 + 𝑞) −
𝑞

1 + 𝑞
൨



− 0.5  𝑠ଶ



− න 𝑑𝜎𝑈[𝜑, 𝑠]ൡ.                             (20) 

Based on 𝑀(𝑔) one can define that the quadratic form 
of functional 𝑀(𝑔) gives us exact and complete results. 
Now the Green's function in the 4D space reads 
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𝐺 
(𝑟,𝑟 |́𝐹) = න

𝑑𝜇

(4𝜋𝜇)ଶ
𝑒

൜ିఓమି
(ି )́మ

ସఓ ൠ
ஶ



× න 𝑑𝜎క𝑒
൜ ∫ ௗక

ௗ (క)
ௗక

భ

బ
ிಳ(క)ൠ

,   (22) 

and, 

𝑍 (𝜉) = (𝑟 − 𝑟 )́𝜉 + 𝑟 ́ − 2ඥ𝜇𝐵(𝜉), 

𝑑𝜎క = 𝑁𝛿𝐵(𝜉)𝑒ቄି.ହ ∫ ௗక (
భ

బ
(క)) మቅ, 

Where 𝑁 is the normalization condition where ∫ 𝑑𝜎క =

1 with boundary conditions 𝐵(0) = 𝐵(1) = 0. Using 

the above presentation of functional 𝐺(𝑟,𝑟 ́|𝐹) for the 
Green's function and the polarization function we define 
[12] 

𝐺 
(𝑟,𝑟 |́𝐹) = 〈𝐺 

(𝑟,𝑟 ́|𝐹)〉

= න
𝑑𝜇

(4𝜋𝜇)ଶ
𝑒

൜ିஜమି
(ି )́మ

ସఓ ൠ
ஶ



. 𝑒ିெశ((ି )́,ఓ), (23) 

𝑀ା = 𝑚𝑖𝑛
(క, σ, λ)>0

ቊ
1

4𝜉
+ 2𝜎 +

𝜆

2

+ 𝑔𝜉 න 𝑑𝜇𝑓(𝑘)
ஶ



ቋ,                     (24) 

where 

𝑓(𝑘) = න 𝑒ିఓ න ൬
𝑑𝑘

2𝜋
൰

ସ

𝐷(𝑘ଶ) ቈ1

− 𝑒
൜
ఓ

ଶఒ
ି

క


మ(ଵି
ష

ഋ
ഊ ൠ

,                        

and 

П(𝑟 − 𝑟 )́ = න න
𝑑𝜇𝑑𝜇

(8𝜋ଶ𝜇𝜇|𝑟 − 𝑟 |́)ଶ

ஶ



 𝛺൫𝜇,𝜇൯

× 𝑒
൝ି

|ି |́
ଶ ቆ


మ

ఓ
ାఓቇା൭

ೕ
మ

ఓೕ
ାఓೕ൱൩ൡ

, (25) 
where 

𝛺൫𝜇,𝜇൯

= 𝑐𝑐 න න 𝛿𝜇 𝛿𝜇𝑒ቄି ∫ ௗఛ ∑ .ହఓೖ ி̇ಳ
మమ

ೖసభ
ഀ

బ
ିೕቅ, (26) 

   𝑈 = −𝑈 + 2𝑈 − 𝑈  ,                                (27)                    

We reduce 4D space of the functional 𝛺൫𝜇,𝜇൯  to the 

3D space (i.e., we neglect the time component) due to 
calculate integrals before describing the functional 

𝛺൫𝜇,𝜇൯ as resembling the behavior of two particles 

with masses 𝜇 , 𝜇 in the nonrelativistic quantum 

mechanics and with the potential and nonpotential 
interaction that includes in 𝑈  in the form of the 

Feynman path integral. Hence, based on the above 
presentation of the propagator (the Green’s function) at 
the limited distant  |𝑟 − 𝑟 |́ → 0 we can determine the 
coupled state total mass 𝑀ା of two bounded particles 
with the rest masses 𝑚, 𝑚 as follows 

𝐺 
(𝑟,𝑟 |́𝐹) = 〈𝐺 

(𝑟,𝑟 |́𝐹)〉

≽
𝑐𝑜𝑛𝑠𝑡

|𝑟 − 𝑟 |́
𝑒{ିெశ|ି |́},               (28) 

where 

𝑀ା = 𝑚𝑖𝑛 ቄ
ଵ

ସక
+ 2𝜎 +

ఒ

ଶ
+ 𝑔𝜉 ∫ 𝑑𝜇𝑓(𝑘)

ஶ


ቅ,   (29)       

which depends on the coupling constant and correlation 

function. 𝑀ା = 𝑔.ହ ൬∫ ቀ
ௗ

ଶగ
ቁ

ସ
𝐷(𝑘ଶ)൰

.ହ

 
for the weak 

interaction 𝑔 ≪ 1 and the strong interaction   𝑔 ≫ 1 
satisfy the relation 

 𝑀ା

= (1.022𝑔).ଶହ ቆන ൬
𝑑𝑘

2𝜋
൰

ସ

𝐷(𝑘ଶ) 𝑘ଶቇ

.ଶହ

, (30) 

 
and also, the functional 𝛺൫𝜇,𝜇൯ which contains 

potential and nonpotential interactions at the asymptotic 
behavior  |𝑟 − 𝑟 |́ → 0 is equivalent to the relation  

𝛺൫𝜇,𝜇൯ ≅ 𝑒൛ି|ି |́ாℓ൫ఓ,ఓೕ൯ൟ,                           (31) 

where the function 𝐸ℓ൫𝜇,𝜇൯ directly depends on 𝜇, 

𝜇 , 𝑚, 𝑚, 𝑔  and it is an eigenvalue of the Schrödinger 

equation 𝐻𝑅(𝑟 − 𝑟 )́ = 𝐸ℓ(𝜇,𝜇)𝑅(𝑟 − 𝑟 ́) of two 

bounded particles with the Hamiltonian: 𝐻 =
ଵ

ଶఓ
𝑝

ଶ +

ଵ

ଶఓೕ
𝑝ଶ

ଶ + 𝑈(|𝑟 − 𝑟 |́). Parameters 𝑚, 𝑚 are the 

current masses of interacting particles, 𝜇, 𝜇 are the 

constituent masses of interacting particles i.e., the mass 
of particles inside the coupled state.  

 Now considering the above equations and relations, we 
define the polarization function for two bounded 
particles, at the asymptotic limit |𝑟 − 𝑟 ́| → 0:П(𝑟 −

𝑟 )́ ≅ 𝑒{ିெశ|ି ́|}, therefore the bound state mass 
spectrum is defined as 
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𝑀ା = − 𝑙𝑖𝑚
|ି |́⟶ஶ

1

|𝑟 − 𝑟 |́
 𝑙𝑛𝛱(𝑟 − 𝑟 )́.            (32) 

The mass of bound state determined analogs for the 
propagator function in Feynman's functional path 
integral form based on the method of exponential 
asymptotic or the method of steepest descent looks like 

𝑀ା =
𝜕

𝜕𝜇,
ቌቆ

𝜇𝑚
ଶ + 𝜇𝑚

ଶ

2𝜇𝜇
ቇ + 0.5൫𝜇 + 𝜇൯

+ 𝐸ℓ൫𝜇,𝜇൯ቍ = 

𝑚𝑖𝑛
ఓ,ఓೕ

ቌቆ
𝜇𝑚

ଶ + 𝜇𝑚
ଶ

2𝜇𝜇
ቇ + 0.5൫𝜇 + 𝜇൯

+ 𝐸ℓ൫𝜇,𝜇൯ቍ.                           (33) 

Therefore, we can define    

𝜇
ଶ + 2𝜇

ଶ 𝜕

𝜕𝜇
𝐸ℓ൫𝜇,𝜇൯ − 𝑚  

ଶ = 0,                (34) 

𝜇
ଶ + 2𝜇

ଶ
𝜕

𝜕𝜇
𝐸ℓ൫𝜇,𝜇൯ − 𝑚  

ଶ = 0.                (35) 

From section 2, we can define the Green’s function of 
two intertwined transformed spaces as follows 

ቆ
𝑑ଶ

𝑑𝑟ଶ
−

𝐿(𝐿 + 1)

𝑟ଶ
+ 𝑊ቇ 𝐺(𝑟 − 𝑟 )́

=      
2𝜇

ℏଶ
𝛿(𝑟 − 𝑟 )́,  

ቆ
𝑑ଶ

𝑑𝑞ଶ
−

𝐿(𝐿 + 1)

𝑞
+ 𝑊ෙ ቇ 𝐺(𝑞 − 𝑞 )́

=
2�̌�

ℏଶ
𝛿(𝑞 − 𝑞 )́.                          (36) 

Now we present the radial Schrödinger equation with 
relativistic energy formula based on the quantum field 
theory description in Eq. (33) and use approximation 
relation (𝑐 = ℏ = 1) 

𝐸 = (𝑝ଶ + 𝑚
ଶ)ଵ/ଶ ≅

1

2
𝑚𝑖𝑛

ఓ

ቆ𝜇 +
𝑝ଶ+𝑚

ଶ

𝜇
 ቇ . (37) 

Therefore, 𝐻𝑅 = 𝐸ℓ𝑅  the radial Schrodinger equation 
for bounded particles with rest masses 𝑚

 ,𝑚
  and the 

constituent masses 𝜇
 ,𝜇

  reads [12] 

ቈ
1

2
ቆ𝜇 +

𝑝ଶ+𝑚
ଶ

𝜇
 ቇ +

1

2
ቆ𝜇 +

𝑝ଶ+𝑚
ଶ

𝜇
 ቇ + 𝑈

− −𝑀 𝑅(𝑟) = 0,                      (38) 

or 

ቈ
𝑝ଶ

2𝜇
+ 𝜇𝑈 𝑅 = ቈ𝑀 −

𝜇
 + 𝜇

 

2

−
𝑚

ଶ𝜇ା
 𝑚

ଶ𝜇
 

2𝜇
 𝜇

  𝑅,                     (39) 

       
where 

𝐸ℓ൫𝜇,𝜇൯ = 𝑀 −
𝜇

 + 𝜇
 

2
−

𝑚
ଶ𝜇

 +𝑚
ଶ𝜇

 

2𝜇
 𝜇

 , (40) 

1

𝜇
=

1

𝜇
+

1

𝜇
,                                                          (41) 

𝜇 is reduced mass, 𝜇
 , 𝜇

  present the mass of particles 

in the bound state, in other words, it is a relativistic mass 
of particle  

𝜇
 =

𝑚𝑐ଶ

ට1 −
𝑣ଶ

𝑐ଶ

,                                                       (42) 

𝑚 is the rest mass and using equations (34) and (35), 
we can define the constituent mass of a particle as 
follows 

𝜇
 = ඨ𝑚

ଶ − 2𝜇ଶ
𝜕

𝜕𝜇
𝐸ℓ൫𝜇,𝜇൯.                      (43) 

6 Mass spectrum of upsilon meson  
 
 The radial Schrödinger equation (Eq. (39)) of the 
upsilon meson system with the Bernoulli interaction’s 

potential type built on ቀ𝑈ு(𝑟) = −𝐴
షವೝ

ଵିషವೝቁ  

Hulthen potential  reads 

ቊ
𝑝ଶ

2𝜇
+ 𝑈(𝑟) − 𝐸ℓ(𝜇)ቋ 𝑅(𝑟) = 0,                   (44) 
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where 𝑚 is the Debye mass and 𝐸ℓ(𝜇) = 𝐸ℓ൫𝜇,𝜇൯ 

and Hulthen potential based on Eq. (3) has the form                                 

𝑈ு(𝑟) = −
𝐴𝑒ିವ

1 − 𝑒ିವ
→ −

𝐴

𝑒ವ(1 − 𝑒ିವ)

= −
𝐴

𝑒ವ − 1
→ 

−
𝐴

𝑟

𝑟

𝑒ವ − 1
= −

𝐴

𝑟
𝑓(𝑥) 

where 𝑓(𝑥) is Bernoulli series 𝑓(𝑥) = 𝐵 + 𝐵ଵ
௫

ଵ!
+

𝐵ଶ
௫మ

ଶ!
+ 𝐵ସ

௫ర

ସ!
+ 𝐵

௫ల

!
+  ⋯. Hence, we define Hulthen's 

potential up to the fourth order by the Bernoulli series   

𝑈(𝑟) =
𝐴

2
−

𝐴

𝑚

1

𝑟
−

𝐴𝑚

2.3!
𝑟 +

𝐴𝑚
ଷ

30.4!
𝑟ଷ.         (45) 

  
Then Eq. (44) using two intertwined spaces 
transformation (Eq. (10)) �̂� = 𝑞ොଶఘ, 𝑅(𝑟) → ℜ(𝑞ොଶఘ) 
takes the form 

𝜀(𝐸ℓ)ℜ = ቊ
�̂�

ଶ

2𝜇
+ 4𝜌ଶ𝑞ොସఘିଶ

 
൫𝑈 − 𝐸ℓ(𝜇)൯ቋ ℜ

= 0.                                                (46) 
                                 
The upsilon meson bound state wave function becomes 
an oscillator. Now, we will analytically calculate the 
mass spectrum and energy eigenvalue of Eq. (46)  using 
the quantum oscillating properties condition of the 
bound state with the Hamiltonian 𝐻 = 𝐻 + 𝐻ூ, where 
𝐻 is the Hamiltonian of free oscillators and 𝐻ூ is the 
Hamiltonian of interactions (or it is directly related to 
the perturbation of the system). The bound state of the 
quantum oscillating system can be presented by the 
Wick ordering method in the Symplectic Space 
(WOSS). It is formulating the canonical variables in 
terms of raising 𝑎ොା and lowering 𝑎ො  operators in the 𝐷-
dimension space i.e.,  

𝑞ො = 
2𝑚𝜔

ℏ
൨

ଵ/ଶ

(𝑎ොା + 𝑎ො ), 

�̂� = 𝑖 ቂ
𝑚𝜔

2ℏ
ቃ

ଵ/ଶ

(𝑎ොା − 𝑎ො ),                                (47) 

 
where 𝜔 is the oscillator frequency. Substituting the 
canonical variables 𝑞ො, �̂�  into the equation (46) and 

ordering by the creation and annihilation operators, the 
interaction Hamiltonian is obtained as follows [12] 

𝐻 = 𝜔(𝑎ොା𝑎ො  ) +
𝐷

2
𝜔 + න ൬

𝑑𝑘

2𝜋
൰



𝑊ෙ (𝑘ଶ)𝑒
ିమ

ସఠ

∶ 𝑒ො : −
𝜔ଶ

2
 ൬: 𝑞ොଶ: +

𝐷

2𝜔
൰.      (48) 

                              
As we know WOSS method requires that the 𝐻ூ would 
not contain the quadratic form of the normal ordering of 
operators : 𝑞ොଶ: , 𝑞ොଶ., these terms are included in the 𝐻. 
Based on this condition one can determine 𝜔 by relation 

𝜔ଶ + ∫ ቀ
ௗ

ଶగ
ቁ



ቀ
మ


ቁ 𝑒

షೖమ

రഘ 𝑊ෙ (𝑘ଶ) =0. The canonical 

variables in Eq. (46) using Eq. (47) read 

�̂�
ଶ௨ = 𝜔௨

𝛤(
𝐷
2

+ 𝑢)

𝛤(
𝐷
2

)
+: �̂�

ଶ: 𝜔௨ିଵ𝑢
𝛤(

𝐷
2

+ 𝑢)

𝛤(
𝐷
2

+ 1)
+: ℵෙ:

≈ 𝜔௨
𝛤 ቀ

𝐷
2

+ 𝑢ቁ

𝛤 ቀ
𝐷
2ቁ

, 

𝑞ොଶ௨ =
1

𝜔௨

𝛤(
𝐷
2

+ 𝑢)

𝛤(
𝐷
2

)
+: 𝑞ොଶ:

𝑢

𝜔௨ିଵ

𝛤(
𝐷
2

+ 𝑢)

𝛤(
𝐷
2

+ 1)
+: ℵ:

≈
1

𝜔௨

𝛤(
𝐷
2

+ 𝑢)

𝛤(
𝐷
2

)
 

and then Eq. (46) reads 

𝜀(𝐸ℓ) =
𝐷𝜔

4
+4𝜌ଶ𝑞ොସఘିଶ

 
൭

𝐴

2
−

𝐴

𝑚

1

𝑞ොଶఘ

−
𝐴𝑚

2.3!
𝑞ොଶఘ +

𝐴𝑚
ଷ

30.4!
𝑞ොఘ

− 𝐸ℓ(𝜇)൱ ℜ = 0.                      (49) 

          
 Using a series of mathematical transformations and 
relations, we determine 𝜔,  𝐸ℓ(𝜇), M and the mass 
parameters 𝜇, 𝜇, 𝜇    by applying the main condition of 

the WOSS method in the creation of a bound state at the 
minimum of oscillator frequency and energy 

eigenvalue. Therefore, 
ௗఌబ(ாℓ)

ௗఘ
= 0 and 

ௗఌబ(ாℓ)

ௗఠ
= 0. 

The former enables to define 𝜌 = 1, while the latter 
enables determining 𝜔 as follows 

𝜔ହ −
8𝜇𝑎

𝐷
𝜔ସ + 2𝜇𝑐(𝐷 + 2)𝜔ଶ −

6𝜇𝑔

𝐷
= 0,                                               (50) 
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where  

𝑎 =
𝐴

𝑚
,   b=

𝐴

2
,   c=

𝐴𝑚

12
,   f=

𝐴𝑚
ଷ

30.4!
,  

  g=𝑓
𝐷(𝐷 + 2)(𝐷 + 4)(𝐷 + 6)

4
, 

       

𝜔 =
64𝜇𝐴

15𝐷𝑚
.                                                 (51) 

The energy eigenvalue is defined by integrating the two 

equations 𝜀(𝐸ℓ) = 0 and 
ௗఌబ(ாℓ)

ௗఠ
= 0 , so it reads 

𝐸ℓ(𝜔, 𝜇) =
𝜔ଶ

8𝜇
−

2𝑎𝜔 

𝐷
+

𝑔𝜔ିଷ

2𝐷
−

𝑐(𝐷 + 2)𝜔ିଵ

2

+ 𝑏.                                                (52) 
Equation (43) determines the constituent mass 
parameters 𝜇, 𝜇 using. We should have to find the 

reduced mass value, one can determine it using relation 
(43)  

1

𝜒
=

1

ඥ1 + 𝛽ଶ𝜒ଶ
+

1

ඥ𝑦ଶ + 𝛽ଶ𝜒ଶ
,                       (53) 

                         

where 𝜒 =


ఓ
, 𝛽 = ቀ

ସ

ଵହ
ቁ

ଶ
. Thus, the mass spectrum of 

the upsilon meson coupled state is determined and Eq. 
(53) gives the relativistic mass of particles based on 
transformed nonrelativistic Schrödinger equation to the 
relativistic form using properties of quantum filed 
theory representation in the path integral form.  

 7 Numerical and theoretical data 
 
 In the previous section, we computed the mass 
spectrum of upsilon meson for the ground state and 
radially excited states in the Bernoulli potential based 
on the Hulthen potential. In the next calculation, we 
suppose the bound state creation depends on finite 
temperature and is introduced in the equations via Deby 
mass. The Deby mass parameter of potential is fitted to 
experimental data from extracted from reference [17]. 
Then solving Eqs. (50),(52), and (53), which are 
obtained from the WOSS method, we utilize the 
numerical values of the upsilon meson bound state, 
which has the quark’s rest mass 𝑚 = 𝑚 =

4.823 𝐺𝑒𝑉[17]. We determine the finite temperature 
effect using well known relation 𝑚 = 14.652𝛼௦(𝑇)𝑇. 
In the numerical calculations 𝛼௦(𝑇) = 2𝜋/(11 −

ଶே

ଷ
)𝑙𝑜𝑔(0.057𝑇), 𝑁 = 3. We take the temperature 

range (30 < T < 150)MeV, and choose the criminal 
temperature 𝑇 = (170 ± 16)𝑀𝑒𝑉 [18, 19]. 

 
Table 1. Mass spectrum and constituent mass of upsilon meson in 
at 𝑚 = 1.520𝐺𝑒𝑉, 𝑚 =4.823 GeV, 𝐴 = −1.591𝐺𝑒𝑉. (all values 

are in (𝐺𝑒𝑉)). 

The upsilon meson mass spectrum M and relativistic 
mass of quarks 𝜇= 𝜇 in the ground and excited states 

and bound state frequency are computed numerically in 
Table 1. Then the upsilon meson ground state 
probability density at finite temperatures with the 
relativistic mass corrections, in the zero-point energy 
state are presented in Fig. 1. 

 

 

 

 

 

 

 

Figure 1. The upsilon meson ground state probability density at the 
finite temperatures (𝑇 = (30, 70, 90)𝑀𝑒𝑉. 

ℓ 0 1 2 

𝜔 0.986 1.544 1.933 

𝜇 2.566 2.447 2.427 

𝜇  4.848. 4.884 4.918 

𝑀 9.469 10.003 10.233 

𝑀௫ [17] 9.460 9.899 10.164 

𝑀௧[22] 9.459 9.618 10.256 

𝑀௧ [22] 9.460 9.619 9.864 

𝑀௧ [20] 9.477 9.900 9.862 

𝑀௧ [21] 9.510 10.155 10.214 

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7

0.0 1.5 3.0 4.5 6.0 7.5 9.0 10.5 12.0

|Ψ|2(GeV)2                  

r (fm)

T=30MeV

T=70MeV

1.1
1.2
1.3
1.4
1.5
1.6
1.7

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7



Jahanshir et al./Journal of Interfaces, Thin films, and Low dimensional systems 7 (1) Summer & Autumn (2022) 693-705 
 

704 
 

8 Conclusions 

 In this study, we utilized Bernoulli's potential to 
calculate the upsilon meson-bound state. We used the 
transformation of two Symplectic intertwined spaces 
and defined all operators in the form of the Wick 
ordering method. Then based on QFT and the Feynman 
path integral properties of the system, the 

approximation form of ඥ𝑝ଶ + 𝑚
ଶ ≅

ଵ

ଶ
𝑚𝑖𝑛

ఓ

൬𝜇 +

మାబ
మ

ఓ
 ൰ is obtained. The approximate solutions to the 

quantized energy values and the constituent mass of 
quarks in the bound states by modifying the radial 
Schrödinger equation are defined. These results can be 
employed to compute the masses of heavy and light 
mesons, all hadronic bound states including 

𝐷௦
ା, 𝐵

ା, 𝐵 
ା, 𝐷ା , 𝐷 

∗ା
 in the ground and excited states. 

We described the upsilon-bound state properties taking 
into account relativistic conditions and the Debye mass 
in the finite temperatures with the strong interaction. 
We applied the WOSS method to obtain an analytical 
solution for the radial Schrödinger equation. The 
calculated masses are found to be in good agreement 
with experimental data as well as with the work of other 
researchers.  As we showed, this simple nonrelativistic 
potential model is useful for approximating the 
properties and characteristics of bound states within a 
thermal environment and at finite temperature. Other 
potential models, such as the Bernoulli type employed 
in this paper, can still be analyzed and compared. In this 
study, we have already solved the radial Schrödinger 
equation, with the relativistic corrections which is a 
crucial step in the correlator calculation based on QFT. 
The systematic approach employed in this paper stands 
as one of the most specific works in this field and has 
the potential to be significant in many branches of 
physics, particularly in hadronic, nuclear, and atomic 
physics. The main and important points of this article 
are 1- Obtaining the approximate form of the potential 
with high-order exponents and removing even or odd 
exponents according to Bernoulli expansion. 2- 
Obtaining the relation of relativistic energy and its 
approximation for the Schrödinger equation 
considering the introduction of the relativistic mass of 
particles that is not present in the Schrödinger equation. 
3- Simplifying the approximate investigation of particle 
interactions at high temperatures. 
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