Preparation of ZnO films using metallic Zinc thin layers: the effect of oxidation temperature and substrate type

Document Type : Original Article

Authors

1 Faculty of Physics, University of Tabriz, Tabriz, Iran

2 Faculty of Chemistry, University of Tabriz, Tabriz, Iran

Abstract

In this study, the effect of oxidation temperature and substrate type on the morphology and optical properties of the ZnO films were investigated. The films were prepared by oxidation of metallic zinc layer under air atmosphere. To examine the effect of oxidation on the growth process, the temperatures of 400, 600, and 800 C were considered. To study the impact of the substrate, amorphous quartz and crystalline silicon substrates were used. At 400 C and quartz substrate, the thin layer grows in the form of particles, while it grows in the nanoflake-like shape when using silicon substrate. The surface roughness increases by the increasing the oxidation temperature. The samples prepared on silicon substrate indicate higher surface roughness than those prepared using quartz substrate. The band gap energy of the films elevated by increasing the oxidation temperature from 400 to 600 C, and then decreased by further increasing the annealing temperature to 800 C. The photoluminescence (PL) spectra of the films confirmed the emission due to exciton recombination related to near band edge emission (NBE) and emission due to defects.

Keywords

Main Subjects

Article Title [Persian]

تهیه لایه های نازک اکسید روی با استفاده از لایه های فلز روی: اثر دمای اکسیداسیون و جنس زیرلایه

Authors [Persian]

  • رضا ترکمانی 1
  • باقر اصلی بیکی 1
  • حمید نقش آرا 1
  • مسیح دربندی 2

1 دانشکده فیزیک، دانشگاه تبریز، تبریز، ایران

2 دانشکده شیمی، دانشگاه تبریز، تبریز، ایران

Keywords [Persian]

  • اکسید روی
  • لایه نازک
  • کند و پاش
  • زیرلایه
  • ویژگی های نوری
[1] C.B. Ong, L.Y. Ng, A.W. Mohammad, A review of ZnO nanoparticles as solar photocatalysts: Synthesis, mechanisms and applications, Renewable and Sustainable Energy Reviews, 81 (2018) 536-551.
[2] M. Al-Kuhaili, S. Durrani, A. El-Said, R. Heller, Enhancement of the refractive index of sputtered zinc oxide thin films through doping with Fe2O3, Journal of Alloys and Compounds, 690 (2017) 453-460.
[3] M.A. Khan, M.K. Singha, K.K. Nanda, S.B. Krupanidhi, Defect and strain modulated highly efficient ZnO UV detector: temperature and low-pressure dependent studies, Applied Surface Science, 505 (2020) 144365.
[4] A.T. Le, M. Ahmadipour, S.-Y. Pung, A review on ZnO-based piezoelectric nanogenerators: Synthesis, characterization techniques, performance enhancement and applications, Journal of Alloys and Compounds, 844 (2020) 156172.
[5] K. Qi, X. Xing, A. Zada, M. Li, Q. Wang, S.-y. Liu, H. Lin, G. Wang, Transition metal doped ZnO nanoparticles with enhanced photocatalytic and antibacterial performances: experimental and DFT studies, Ceramics International, 46 (2020) 1494-1502.
[6] L. Xu, X. Wang, L. Qian, Y. Zhu, X. Luo, W. Wang, X. Xu, J. Xu, The dependence of the optical properties of ZnO nanorod arrays on their growth time, Optik, 202 (2020) 163634.
[7] A. Habibi, L. Vatandoust, S.M. Aref, H. Naghshara, Formation of high performance nanostructured ZnO thin films as a function of annealing temperature: structural and optical properties, Surfaces and Interfaces, 21 (2020) 100723.
[8] N.B. Patil, A.R. Nimbalkar, M.G. Patil, ZnO thin film prepared by a sol-gel spin coating technique for NO2 detection, Materials Science and Engineering: B, 227 (2018) 53-60.
[9] R. Gill, S. Ghosh, A. Sharma, D. Kumar, V.-H. Nguyen, D.-V.N. Vo, T.-D. Pham, P. Kumar, Vertically aligned ZnO nanorods for photoelectrochemical water splitting application, Materials Letters, 277 (2020) 128295.
[10] R. Gonçalves, P. Barrozo, G. Brito, B. Viana, F. Cunha, The effect of thickness on optical, structural and growth mechanism of ZnO thin film prepared by magnetron sputtering, Thin Solid Films, 661 (2018) 40-45.
[11] O. Urper, N. Baydogan, Effect of Al concentration on optical parameters of ZnO thin film derived by Sol-Gel dip coating technique, Materials Letters, 274 (2020) 128000.
[12] X. Zhao, K. Nagashima, G. Zhang, T. Hosomi, H. Yoshida, Y. Akihiro, M. Kanai, W. Mizukami, Z. Zhu, T. Takahashi, Synthesis of monodispersedly sized ZnO nanowires from randomly sized seeds, Nano Letters, 20 (2019) 599-605.
[13] T.T.K. Chi, N.T. Le, B.T.T. Hien, D.Q. Trung, N.Q. Liem, Preparation of SERS substrates for the detection of organic molecules at low concentration, Commun. Phys, 26 (2016) 261-268.
[14] S. Noothongkaew, S. Pukird, W. Sukkabot, B. Kasemporn, P. Songsiririttikul, K.S. An, Zinc oxide nanostructures synthesized by thermal oxidation of zinc powder on Si substrate,  Applied Mechanics and Materials, Trans Tech Publ, 2013, pp. 710-714.
[15] A. Peguit, R. Candidato, F. Bagsican, M. Odarve, M. Jabian, B. Sambo, R. Vequizo, A. Alguno, Growth of chemically deposited ZnO and ZnO-SiO2 on Pt buffered Si substrate,  IOP Conference Series: Materials Science and Engineering, IOP Publishing, 2015, pp. 012026.
[16] T. Babeva, H. Awala, M. Vasileva, J. El Fallah, K. Lazarova, S. Thomas, S. Mintova, Zeolite films as building blocks for antireflective coatings and vapor responsive Bragg stacks, Dalton Transactions, 43 (2014) 8868-8876.
[17] K. Vanheusden, C. Seager, W.t. Warren, D. Tallant, J. Voigt, Correlation between photoluminescence and oxygen vacancies in ZnO phosphors, Applied physics letters, 68 (1996) 403-405.
[18] S. Al-Ariki, N.A. Yahya, S.a.A. Al-A’nsi, M. Jumali, A. Jannah, R. Abd-Shukor, Synthesis and comparative study on the structural and optical properties of ZnO doped with Ni and Ag nanopowders fabricated by sol gel technique, Scientific Reports, 11 (2021) 1-11.
[19] S. Arya, P. Mahajan, S. Mahajan, A. Khosla, R. Datt, V. Gupta, S.-J. Young, S.K. Oruganti, influence of processing parameters to control morphology and optical properties of Sol-Gel synthesized ZnO nanoparticles, ECS Journal of Solid State Science and Technology, 10 (2021) 023002.
[20] F. Shan, G. Liu, W. Lee, B. Shin, Stokes shift, blue shift and red shift of ZnO-based thin films deposited by pulsed-laser deposition, Journal of crystal growth, 291 (2006) 328-333.
[21] M. Patra, K. Manzoor, M. Manoth, S. Vadera, N. Kumar, Studies of luminescence properties of ZnO and ZnO: Zn nanorods prepared by solution growth technique, Journal of Luminescence, 128 (2008) 267-272.
[22] L. Wang, F. Wu, D. Tian, W. Li, L. Fang, C. Kong, M. Zhou, Effects of Na content on structural and optical properties of Na-doped ZnO thin films prepared by sol–gel method, Journal of Alloys and Compounds, 623 (2015) 367-373.
[23] R. Raji, K. Gopchandran, ZnO nanostructures with tunable visible luminescence: Effects of kinetics of chemical reduction and annealing, Journal of Science: Advanced Materials and Devices, 2 (2017) 51-58.
[24] N. Erdogan, T. Kutlu, N. Sedefoglu, H. Kavak, Effect of Na doping on microstructures, optical and electrical properties of ZnO thin films grown by sol-gel method, Journal of Alloys and Compounds, 881 (2021) 160554.