[1] D. Jianxin, L. Aihua. Dry sliding wear behavior of PVD TiN, Ti55Al45N, and Ti35Al65N coatings at temperatures up to 600 °C, Int. J. Refract. Metals Hard Mater. 41 (2013) 241–249.
[2] D. Jianxin, W. Fengfang, L. Yunsong, X. Youqiang, L. Shipeng, Erosion wear of CrN, TiN, CrAlN, and TiAlN PVD nitride coatings, Int. J. Refract. Metals Hard Mater. 35 (2012) 10–16.
[3] P. Hedenqvist, M. Bromark, M. Olsson, S. Hogmark, E. Bergmann, Mechanical and tribological characterization of low-temperature deposited PVD TiN coatings, Surf. Coat. Technol. 63(1994) 115-122.
[6] L. Haiyi, L. Yongzhi, G. Bingxiang, X. Liqiang, Highly (200)-Preferred Orientation TiN Thin Films Grown by DC Reactive Magnetron Sputtering, American Journal of Physics and Applications, 5(2017) 41-45.
[7] A. B. Mei, A. Rockett, L. Hultman, I. Petrov, J. E. Greene, Electron/phonon coupling in group-IV transition-metal and rare-earth nitrides, J. Appl. Phys. 114(2013) 193708-193805.
[8] H.-S. Seo, T.-Y. Lee, I. Petrov, J. E. Greene, D. Gall, Epitaxial and plycrystalline HfN𝑥HfNx (0.8⩽𝑥⩽1.5)(0.8⩽x⩽1.5) layers on MgO(001): Film growth and physical properties, J. Appl. Phys. 97(2005) 083521-083526.
[9] T. Reeswinkel, D. G. Sangiovanni, V. Chirita, L. Hultman, J. M. Schneider, Structure and mechanical properties of TiAlN–WNx thin films, Surf. Coat. Technol. 205(2011) 4821-4827.
[10] V. Ataibis, S. Taktak, Characteristics and growth kinetics of plasma paste borided Cp–Ti and Ti6Al4V alloy, Sur. Coat. Technol. 279 (2015) 65-71.
[11] B. Rauschenbach, J. W. Gerlach, Texture Development in Titanium Nitride Films Grown by Low-Energy Ion Assisted Deposition, Cryst. Res. Technol. 35(2000) 675-688.
[12] P. Patsalas, C. Charitidis, S. Logothetidis, The effect of substrate temperature and biasing on the mechanical properties and structure of sputtered titanium nitride thin films, Surface and Coatings Technology, 125(2000) 335–340.
[13] J. H. Huang, K. J. Yu, P. Sit, G. P. Yu, Heat treatment of nanocrystalline TiN films deposited by unbalanced magnetron sputtering, Surf. Coat. Techol. 200 (2006) 4291–4299.
[14] P.J. Martin, Ion-based methods for optical thin film deposition, J. Mater. Sci. 21 (1986) 1-25.
[15] L.E. Koutsokeras, G.M. Matenoglou, P. Patsalas, Structure, electronic properties and electron energy loss spectra of transition metal nitride films. Thin Solid Films. 528 (2013) 49–52.
[16] C.A. Dimitriadis, J.I. Lee, P. Patsalas, S. Logothetidis, D.H. Tassis, J. Brini, G. Kamarinos, Characteristics of TiNx/n-Si Schottky diodes deposited by reactive magnetron sputtering, J. Appl. Phys. 85 (1999) 4238–4242.
[17] D. Sosnin, D. Kudryashov, A. Mozharov, Investigation of electrical and optical properties of low temperature titanium nitride grown by rf-magnetron sputtering, IOP Conf. Series: Journal of Physics: Conf. Series 917 (2017) 052025-0502029.
[18] J. M. Wang, W. G. Liu, T. Mei, The effect of thermal treatment on the electrical properties of titanium nitride thin films by filtered arc plasma method, Cera. Inter. 30(2004) 1921-1924.
[19] E. Santecchia, E. Zalnezhad, A.M.S. Hamouda, F. Musharavati, M. Cabibbo, S.Spigarelli, Wear resistance investigation of titanium nitride-based coatings, Cera. Inter. 41(2015)10349–10379.
[20] I. Petrov, P.B. Barna, L. Hultman, J.E. Greene, Microstructural evolution during film growth, J. Vac. Sci. Technol. A. 2 (2003) 117–128.
[21] S. Sedira, S. Achour, A. Avci, V. Eskizeybek, Physical deposition of carbon doped titanium nitride film by DC magnetron sputtering for metallic implant coating use, Appl. Surf. Sci. 295 (2014) 81– 85.
[22] R.A. Rosu, V.A. Serban, A.I. Bucur, U. Dragos, Deposition of titanium nitride and hydroxyapatite-based biocompatible composite by reactive plasma spraying, Appl. Surf. Sci. 258 (2012) 3871–3876.
[23] H. O. Pierson: Handbook of Refractory Carbides and Nitrides, Properties, Characteristics, Processing and Applications, Noyes Publications, New Jersey, 1996.
[24] P. Patsalas, N. Kalfagiannis, S. Kassavetis, Optical Properties and Plasmonic Performance of Titanium Nitride, Materials, 8 (2015) 3128-3154.
[25] S. PalDey, S.C. Deevi, Single layer and multilayer wear resistant coatings of (Ti,Al)N: a review, Mat. Sci. Eng. A 342 (2003) 58-79.
[26] J.E .Alfonso, F. Pacheco, C. Moreno, R. Garzon, J. Torres, Recubrimientos de TiN realizados mediante magnetrón rf, Revista Colombiana de Fisica, 35 (2003) 47-51.
[27] M.J. Carbonari, J.R. Martinelli, Effects of hot isostatic pressure on titanium nitride films deposited by physical vapor deposition, Mat. Res. 4(2001) 163-168.
[28] H. Hamamura, H. Komiyama, Y. Shimogaki, TiN films prepared by flow modulation chemical vapor deposition using TiCl4 and NH3. Jap. J. Appl. Phys. 2001, 40, 1517–1521.
[29] J. Zheng, L.v. Yanhong, X.u. Shusheng, Nanostructured TiN-based thin films by a novel and facile synthetic route, Materials and Design, 113(2017) 142-148.
[30] W. Ensinger, B. Rauschenbach, Microstructural investigations on titanium nitride films formed by medium energy ion beam assisted deposition. Nucl. Inst. Meth. Phys. Res. B 80–81(1993) 1409–1414.
[31] Y.H. Cheng, B.K. Tay, S.P. Lau, H. Kupfer, F. Richter, Substrate bias dependence of Raman spectra for TiN films deposited by filtered cathodic vacuum arc, J. Appl. Phys. 92 (2002) 1845–1849.
[32] H. Wang, A. Tiwari, A. Kvit, X. Zhang, J. Narayan, Epitaxial growth of TaN thin films on Si(100) and Si(111) using a TiN buffer layer, Appl. Phys. Lett. 80 (2002) 2323–2325.
[33] J. Paulitsch, M. Schenkel, T. Zufraß, P.H. Mayrhofer, W.D. Münz, Structure and properties of high power impulse magnetron sputtering and DC magnetron sputtering CrN and TiN films deposited in an industrial scale unit, Thin Solid Films, 518 (2010) 5558–5564.
[34] M. Ritala, M. Leskelä, E. Rauhala, J. Jokinen, Atomic layer epitaxy growth of TiN thin films from TiI4 and NH3, J. Electrochem. Soc. 145 (1998) 2914–2920.
[35] S. Mahieu, D. Depla, Reactive sputter deposition of TiN layers: Modelling the growth by characterization of particle fluxes towards the substrate, J. Phys. D 42 (2009) 053002-053006.
[36] P. Patsalas, C. Gravalidis, S. Logothetidis, Surface kinetics and subplantation phenomena affecting the texture, morphology, stress, and growth evolution of titanium nitride films, J. Appl. Phys. 96 (2004) 6234–6246.
[37] N. Saoula, K. Henda, R. Kesri, Influence of Nitrogen Content on the Structural and Mechanical Properties of TiN Thin Films, J. Plasma Fusion Res. SERIES, 8 (2009) 1403-1407.
[38] S. Hofmann, Formation and diffusion properties of oxide films on metals and on nitride coatings studied with Auger electron spectroscopy and X-ray photoelectron spectroscopy, Thin Solid Films. 2 (1990) 193–194.
[39] W. J. Chou, G.P. Yu, J. H. Huang, Deposition of TiN thin films on Si(100) by HCD ion plating, Sur. Coat. Technol. 140 (2001) 206-214.
[40] Y. Jeyachandran, S. Narayandass, D. Mangalaraj, S. Areva, J. Mielczarski, Properties of titanium nitride films prepared by direct current magnetron sputtering, Mat. Sci. Engin. A 445–446 (2007) 223–236.
[41] G. Gagnon, J. Currie, C. Beique, J. Brebner, S. Gujrathi, L. Onllet, Characterization of reactively evaporated TiN layers for diffusion barrier applications, J. Appl. Phys. 75 (1994) 1565-1569.
[42] K. Vasua, M.G. Krishna, K. Padmanabhan, Substrate-temperature dependent structure and composition variations in RF magnetron sputtered titanium nitride thin films, Appl. Surf. Sci. 257 (2011) 3069–3074.
[43] X. Kewei, C. Jin, G. Rensheng, H. Jiawen, Thermal effects of residual macro stress and micro strain in plasma-assisted CVD TiN films, Surf. Coat. Technol. 58 (1993) 37–43.
[44] P.H. Mayrhofer, F. Kunc, J. Musil, C. Mitterer, A comparative study on reactive and non-reactive unbalanced magnetron sputter deposition of TiN coatings, Thin Solid Films, 415 (2002) 151–159.
[45] M. Kuznetsov, M.V. Zhuravlev, E.V. Shalayeva, V.A. Gubanev, XPS analysis of adsorption of oxygen molecules on the surface of Ti and TiNx films in vacuum, Thin solid films, 215 (1992)1-6.
[46] T. Wierzchon, T. Burakowski, Surface Engineering of Metals-Principles, Equipment, Technologies, CRC Press, New York, USA, (1999).
[47] James R. Connolly, for EPS 400-001, Introduction to X-Ray Powder Diffraction, Diffraction Basics, Part 2, Spring 2007.
[48] N. Saoula, S. Djerourou, K. Yahiaoui, K. Henda, R. Kesri, R. M. Erasmus, J. D. Comins, Study of the deposition of Ti/TiN multilayers by magnetron sputtering, Surf. Interface Anal. 2010, 42, 1176–1179.
[49] J. P. Zhao, X. Wang, Z. Y. Chen, S. Q. Yang, T. S. Shi, X. H. Liu, Overall energy model for preferred growth of TiN films during filtered arc deposition, J. Appl. Phys. D 30 (1997) 5–12.
[50] F. Wang, M. Z. Wu, Y. Y. Wang, Y. M. Yu, X. M. Wu, L.J. Zhuge, Influence of thickness and annealing temperature on the electrical, optical and structural properties of AZO thin films, Vacuum, 89 (2013) 127–131.
[51] L.K. Robinson, section 10d. Surface specific methods, Methods in materials research, (2000).
[52] K. Vasu, M. G. Krishna, and K. A. Padmanabhan, Effect of Nb concentration on the structure, mechanical, optical, and electrical properties of nano-crystalline Ti1−x Nb x N thin films, J. Mater. Sci. 47(2012) 3522-3528.
[53] F. Vaz, L. Rebouta, S. Ramos, M. F. da Silva, J. C. Soares, Physical, structural and mechanical characterization of Ti1−xSixNy films, Surf. Coat. Technol. 108– 109 (1998) 236-240.
[54] U. Guler, A. Kildishev, A. Boltassevaab, V. Shalaev, U. Guler, A.V. Kildishev, A. Boltasseva, V. M. Shalaev, Plasmonics on the slope of enlightenment: the role of transition metal nitrides, Faraday Discussions, 178 (2015) 71–86.
[55] A. Newport, C. Carmalt, I. Parkin, O’Neill S, Dual source APCVD synthesis of TaN and NbN thin films on glass from the reaction of MCl5 (M = Ta, Nb) and 1,1,1,3,3,3-hexamethyldisilazane, J. Mater. Chem .14. (2014) 3333.
[56] P. LeClair, G.P. Berera, J.S. Moodera, Titanium nitride thin films obtained by a modified physical vapor deposition process, Thin Solid Films 376 (1-2), 9-15.
[58] E. Aydin, M. Sankir, N.D. Sankir, J. Alloys Compd. 603, 119, (2014).
[59] N. Miyata, S. Akiyoshi, PREPARATION AND ELECTROCHROMIC PROPERTIES OF RF-SPUTTERED MOLYBDENUM OXIDE-FILMS, J. Appl. Phys. 58 (1985)1651–55.
[60] J. Tauc, J. Optical Properties of Solids (North-Holland Pub, Amsterdam, 1972).
[61] S. S. Tneh, Z. Hassan, K. G. Saw, F. K. Yam, and H. A. Hassan, The structural and optical characterizations of ZnO synthesized using the “bottom-up” growth method, Physica B, vol. 405 (2010) 2045–2048.
[62] A. Kavitha, R. Kannan, P. Sreedhara Reddy, S. Rajashabala, The effect of annealing on the structural, optical and electrical properties of Titanium Nitride (TiN) thin films prepared by DC magnetron sputtering with supported discharge, J. Mater. Sci: Mater Electron, 27(2016) 10427–10434.
[63] R. Ellwanger, J. Towner, The deposition and film properties of reactively sputtered titanium nitride, Thin Solid Films, 161(1988) 289–304.
[64] Y. Jeyachandran, S. Narayandass, D. Mangalaraj, S. Areva, J. Mielczarski, Properties of titanium nitride films prepared by direct current magnetron sputtering, Materials Science and Engineering A 445–446 (2007) 223–236.
[65] J. E. Sundgren, Structure and properties of TiN coatings, Thin Solid Films, 128 (1985) 21-44.
[66] B. Subramanian, R. Ananthakumar, V.S. Vidhya, M. Jayachandran, Influence of substrate temperature on the materials properties of reactive DC magnetron sputtered Ti/TiN multilayered thin films, Mater. Sci. Eng. B 176 (2011) 1-7.
[67] N.K. Ponon, D. J. R. Appleby, E. Arac, P.J. King, S. Ganti, K.S.K. Kwa, A. O’Neill, Effect of deposition conditions and post deposition anneal on reactively sputtered titanium nitride thin films, Thin Solid Films 578(2015) 31-37.
[68] M. S. R. N. Kiran, M. G. Krishna, K. A. Padmanabhan, Substrate-dependent structure, microstructure, composition and properties of nanostructured TiN films, Solid state comm. 151(2011) 561–563.
[69] F. Cemina, D. Lundin, D. Cammilleri, T. Maroutian, P. Lecoeur, T. Minea, Low electrical resistivity in thin and ultrathin copper layers grown by high power impulse magnetron sputtering, J. Vac. Sci. Technol. A, 34(2016) 051506-051600.
[70] F. Le´vy, P. Hones, P.E. Schmid, R. Sanjine´s, M. Diserens, C. Wiemer, Electronic states and mechanical properties in transition metal nitrides, Sur. Coat. Technol. 120–121 (1999) 284–290.
[71] N. Saoula, K. Henda, R. Kesri, Influence of Nitrogen Content on the Structural and Mechanical Properties of TiN Thin Films, J. Plasma Fusion Res. Series 8(2009) 1403-1408.
[72] F. Vaz, J. Ferreira, E. Ribeiro, L. Rebouta, S. Lanceros-Me´ndez, J.A. Mendes, E. Alves, Ph. Goudeau, J.P. Rivie`re, F. Ribeiro, I. Moutinho, K. Pischow, J. de Rijk, content on the structural, mechanical and electrical properties of TiN thin films, Surface & Coatings Technology 191 (2005) 317– 323.