مدلسازی یک مدولاتور پهن باند در ناحیه فروسرخ میانی با کارایی بالا با استفاده از موجبر پلاسمونیکی مخلوط بر پایه ی گرافن

نوع مقاله : مقاله پژوهشی

نویسندگان

1 تهران، دانشگاه الزهرا، دانشکده فیزیک، بخش فیزیک ماده چگال

2 گروه فیزیک، دانشکده علوم، دانشگاه علوم دریایی امام خمینی (ره)، نوشهر، ایران

چکیده

یک موجبر پلاسمونیک هیبریدی مبتنی بر گرافن (GHPW) با ساختار هندسی منحصر به فرد برای هدایت و مدولاسیون پلاریتون پلاسمون سطحی (SPP) در محدوده فرکانس 30-10 THz طراحی شده است. این موجبر از یک لایه گرافن در وسط، یک لایه دریچه ای پلی اتیلن با چگالی بالا (HDPE) و دو لایه جداکننده دی الکتریک داخلی و دو زیرلایه ژرمانیوم نیمه استوانه ای تشکیل شده است که به طور متقارن در هر دو لبه گرافن تعبیه شده اند. برای انتشار مدهای SPP در ناحیه فرکانسی 10-30 تراهرتز، ناحیه مدی کوچک( 4-10~) و طول انتشار بلند (10.67-28.92 میکرومتر) در انرژی فرمی 1.0 الکترون ولت، بدست آمده است. با کنترل انرژی فرمی گرافن، مشخص شد که به ازای گستره فرکانسی 30-10 تراهرتز، این ساختار دارای عمق مدولاسیون بالاتر از 20 درصد است و در فرکانس بیشتر از 28.75 تراهرتز به بیشینه مقدار خود می رسد. موجبر پیشنهاد شده، نوید بخش بهره مندی از انتشار پهن باند با راندمان مدولاسیونی بالا، و ایجاد نسل متفاوتی از موجبرهای MIR، مدولاتورها، و دستگاه‌های فوتونیکی و نوری را می دهد.

کلیدواژه‌ها

موضوعات

[1] J. Xu, Z. Ren, B. Dong, X. Liu, C. Wang, Y. Tian and C Lee, “Nanometer-Scale Heterogeneous Interfacial Sapphire Wafer Bonding for Enabling Plasmonic-Enhanced Nanofluidic Mid-Infrared Spectroscopy.” ACS Nano, 14 (2020) 12159.  
[2] B. Fang et al., “Bidirectional mid-infrared communications between two identical macroscopic graphene fibers.” nature communications, 11 (2020) 6368.
[3] A. Tittl et al., “A Switchable Mid-Infrared Plasmonic Perfect Absorber with Multispectral Thermal Imaging Capability.” Advanced Materials, 27 (2015) 4597.
[4] J. Zhang et al., “Fano-Resonance in Hybrid Metal-Graphene Metamaterial and Its Application as Mid-Infrared Plasmonic Sensor.” Micromachines, 11 (2020) 268.
[5] L. Ye, K. Sui, Y. Liu, M. Zhang and Q. Liu, “Graphene-based hybrid plasmonic waveguide for highly efficient broadband mid-infrared propagation and modulation.” Optics Express, 26 (2018) 15935.
[6] M. R. Jafari and M. Omidi, “The effect of quantum ring size on shifting the absorption coefficient from infrared region to ultraviolet region.” Applied Physics A, 125 (2019) 1.
[7] M. R. Jafari and B. Bahrami, “Emission properties of porphyrin compounds in new polymeric PS: CBP host.”  Applied Physics A, 119 (2015) 1491.
[8] D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit.” Nat. Photonics, 4 (2010) 83.
[9] E. Ozbay, “Plasmonics: Merging photonics and electronics at nanoscale dimensions.” Science, 311 (2006) 189.
[10] M. R. Jafari and F. Ebrahimi, “Plasmonic Thermal Conductance of Stack of Metallic Nanorings.” Journal of Sciences Islamic Republic of Iran, 21 (2010) 279.
[11] M. Farhadi, M. Jafari and M. Shahmansouri, “Effective mass dependence of the gyrotropic nihility in a BaM/6H-SiC multilayer structure.” Applied Physics A, 126 (2020) 1.
[12] N. Ranjkesh, M. Basha, A. Taeb, A. Zandieh, S. Gigoyan and S. Safavi-Naeini, “Silicon-on-glass dielectric waveguide—Part I: For millimeter-wave integrated circuits.” IEEE Trans. THz Sci. Technol., 5 (2015) 268.
[13] T. S. Saini, A. Kumar and R. K. Sinha, “Broadband Mid-Infrared Supercontinuum Spectra Spanning 2-15 μm Using As2Se3 Chalcogenide Glass Triangular-Core Graded-Index Photonic Crystal Fiber.”  J. Lightwave Technol., 33 (2015) 3914.
[14] C. Yang, Q. Wu, J. Xu, K. A. Nelson and C. A. Werley, “Experimental and theoretical analysis of THz frequency, direction-dependent, phonon polariton modes in a subwavelength, anisotropic slab waveguide.” Opt. Express, 18 (2010) 26351.
[15] R. Zia, J. A. Schuller, A. Chandran and M. L. Brongersma, “Plasmonics: the next chip-scale technology.” Mater. Today, 9 (2006) 20.
[16] M. R. Jafari, F. Ebrahimi and M. Nooshirvani, “Subwavelength electromagnetic energy transport by stack of metallic nanorings.” Journal of Applied Physics, 108  (2010) 054313.
[17] C. L. Smith, N. Stenger, A. Kristensen, N. A. Mortensen and S. I. Bozhevolnyi, “Gap and channeled plasmons in tapered grooves: a review.” Nanoscale, 7 (2015) 9355.
[18] R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation.” Nat. Photonics, 2 (2008) 496.
[19] Z. Zhang and J. Wang, “Long-range hybrid wedge plasmonic waveguide.” Sci. Rep., 4 (2014) 6870.
[20] Y. Gao, G. Ren, B. Zhu, J. Wang and S. Jian, “Single-mode graphene-coated nanowire plasmonic waveguide.” Opt. Lett., 39 (2014) 5909.
[21] A. K. Geim, “Graphene: status and prospects.” Science, 324 (2009) 1530.
[22] A. N. Grigorenko, M. Polini and K. S. Novoselov, “Graphene plasmonics.” Nat. Photonics, 6 (2012) 749.
[23] A. Asadi, M. R. Jafari, M. Shahmansouri, “Characteristics of a Symmetric Mid-infrared Graphene Dielectric Hybrid Plasmonic Waveguide with Ultra-deep Subwavelength Confinement.” Plasmonics, 17 (2022)1819-1829.
[24] A. Asadi, M. R. Jafari, M. Shahmansouri, “Simulation optimized design of graphene-based hybrid plasmonic waveguide.” Indian Journal of Physics,  Published: 30 January (2023).
[25] X. He, T. Ning, L. Pei, J. Zheng, J. Li and J. Wang, “Deep subwavelength graphene-dielectric hybrid plasmonic waveguide for compact photonic integration.” Results in Physics, 21 (2021) 103834.
[26] V. W. Brar, M. S. Jang, M. Sherrott, J. J. Lopez and H. A. Atwater, “Highly confined tunable mid-infrared plasmonics in graphene nanoresonators.” Nano Lett., 13, (2013) 2541.
[27] M. Shahmansouri, B. Farokhi and R. Aboltaman, “Exchange interaction effects on low frequency surface waves in a quantum plasma slab.” Phys. Plasmas, 24 (2017) 054505.
[28] R. Aboltaman and M. Shahmansouri, “Boundary graphene layer effect on surface plasmon oscillations in a quantum plasma half-space.” Comm. Teor. Phys. 72 (2020) 045501.
[29] L. Jiang, C. Yuan, Z. Li, J. Su, Z. Yi, W. Yao, P. Wu, Z. Liu, S. Cheng and M. Pan, “Multi-band and high-sensitivity perfect absorber based on monolayer graphene metamaterial.” Diamond & Related Materials, 111 (2020) 108227.
[30] F. Jabbarzadeh and A. Habibzadeh-Sharif, “High performance dielectric loaded graphene plasmonic waveguide for refractive index sensing.” Optics Communications, 479 (2021) 126419.
[31] Y. Sharma, R. R. Ghosh, V. Sapra, V. Jalal, K. Ahmed and A. Dhawan, “Plasmonic switches based on arrays of plasmonic nanostructures surrounded by VO2 thin films.” Quantum Sensing and Nano Electronics and Photonics XVI, 10926 (2019) 109262S.
[32] D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. García de Abajo, V. Pruneri and H. Altug, “Mid-infrared plasmonic biosensing with graphene.” Science, 349 (2015) 165.
[33] L. Luo, K. Wang, C. Ge, K. Guo, F. Shen, Z. Yin and Z. Guo, “Actively controllable terahertz switches with graphene-based nongroove gratings.” Photon. Res., 5 (2017) 604.
[34] M. Liu, X. Yin and X. Zhang, “Double-layer graphene optical modulator.” Nano Lett., 12 (2012) 1482.
[35] A. Asadi, M. R. Jafari, M. Shahmansouri, “Characteristics of a Symmetric Mid-infrared Graphene Dielectric Hybrid Plasmonic Waveguide with Ultra-deep Subwavelength Confinement.” Plasmonics, 17 (2022) 1819.
[36] D. Teng, Y. Wang, T. Xu, H. Wang, Q. Shao and Y. Tang, “Symmetric Graphene Dielectric Nanowaveguides as Ultra-Compact Photonic Structures,” Nanomaterials 11 (2021) 1281.
[37] M. Shahmansouri and M. Mahmodi-Moghadam, “Quantum electrostatic surface waves in a hybrid plasma waveguide: Effect of nano-sized slab.” Phys. Plasmas, 24 (2017) 102107.
[38] M. Mahmodi-Moghadam and M. Shahmansouri, “Theoretical study of surface waves in a magnetized conductor-gap-dielectric nano-structure.” Physica Scr., 95 (2020) 085606.
[39] Y. Zhao et al., “Enhanced SERS Stability of R6G Molecules with Monolayer Graphene.” J. Phys. Chem. C, 118 (2014) 11827.
[40] P. Wang, O. Liang, W. Zhang, T. Schroeder and Y. H. Xie, “Ultra-Sensitive Graphene-Plasmonic Hybrid Platform for Label-Free Detection.” Adv Mat., 25 (2013) 4918.
[41] T. Tite et al., “Graphene-based textured surface by pulsed laser deposition as a robust platform for surface enhanced Raman scattering applications.” Appl. Phys. Lett., 104 (2014) 41912.
[42] Y. Hajati, Z. Zanbouri and M. Sabaeian, “Low-loss and high-performance mid-infrared plasmon-phonon in graphene-hexagonal boron nitride waveguide.” Journal of the Optical Society of America B, 35 (2018) 446.  
[43] G. W. Hanson, “Dyadic Green’s functions for an anisotropic, non-local model of biased graphene.” IEEE Trans. Antenn. Propag., 56 (2008) 747.
[44] Q. Zhang, X. Li, M. M. Hossain, Y. Xue, J. Zhang, J. Song, J. Liu, M. D. Turner, S. Fan, Q. Bao, and M. Gu,
“Graphene surface plasmons at the near-infrared optical regime.” Sci. Rep., 4 (2014) 6559.
[45] W. Xu, Z. H. Zhu, K. Liu, J. F. Zhang, X. D. Yuan, Q. S. Lu, and S. Q. Qin, “Toward integrated electrically
controllable directional coupling based on dielectric loaded graphene plasmonic waveguide.” Opt. Lett., 40
(2015) 1603.
[46] J. S. Gómez-Díaz, M. Esquius-Morote, and J. Perruisseau-Carrier, “Plane wave excitation-detection of nonresonant plasmons along finite-width graphene strips.” Opt. Express, 21 (2013) 24856.
[47] K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, and H. L. Stormer, “Ultrahigh electron mobility in suspended graphene.” Solid State Commun., 146 (2008) 351.
[48] W. Gao, J. Shu, C. Qiu, and Q. Xu, “Excitation of plasmonic waves in graphene by guided-mode resonances.” ACS Nano, 6 (2012) 7806.
[49] C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, “Boron nitride substrates for high-quality graphene electronics.” Nat. Nanotechnol., 5 (2010) 722.
[50] X. Chen, et al., “A Broadband Optical Modulator Based on a Graphene Hybrid Plasmonic Waveguide.” Journal of Lightwave Technology, 34 (2016) 4948.
[51] Y. Zhang, S. Qiao, S. Liang, Z. Wu, Z. Yang, Z. Feng, H. Sun, Y. Zhou, L. Sun, Z. Chen, X. Zou, B. Zhang, J. Hu, S. Li, Q. Chen, L. Li, G. Xu, Y. Zhao, and S. Liu, “Gbps terahertz external modulator based on a composite metamaterial with a double-channel heterostructure.” Nano Lett., 15 (2015) 3501.