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A graphene based-hybrid plasmonic waveguide (GHPW) with unique geometric 
structure is designed for surface plasmon polariton guidance and modulation at the 
frequency area of 10 to 30 THz.  The GHPW is consist of a graphene layer in the middle, 
a high-density polyethylene (HDPE) gating layer, and two interior  dielectric delimiter 
layers and two exterior  semi-cylinder Germanium substrates symmetrically embedded 
on both edges of the graphene. Because of the matchless semi-cylinder structure design, 
the electromagnetic wave interaction with graphene ultimate subwavelength SPPs 
strong confinement with long propagation length. Small normalized mode area of 
~10ିସ and long propagation length of 10.67-28.92 μm at Fermi energy of 1.0 eV is 
attained for SPPs modes propagation of the GHPW in the frequency bound of 10-30 
THz and semi-cylinder radius R > 450 nm, respectively. By controlling the graphene 
Fermi energy, it is found that the structure has a modulation depth higher than 20 % for 
the frequency band of 10-30 THz and arrives at the peak of approximately 100 % at the 
frequency greater than 28.75 THz. To benefit from the great broadband MIR 
propagation and modulation efficiency, the GHPW may promise different MIR 
waveguides, modulators, photonic, and optoelectronic devices.   

 

1 Introduction 

 Mid-infrared (MIR), an electromagnetic radiation 
(EMR) with the frequency band of 6-100 THz, has 
attracted much attention due to their phenomenal 
utilizations in spectroscopy [1], communications [2], 
imaging [3], sensing [4], modulation [5], absorbing 
[6,7] etc. Waveguides guide the electromagnetic waves 
with less loss of energy and are utilized as ingredients 
in optical integrated circuits or as optical 
communication systems. It would be considered 
promising to expand novel MIR waveguides with 
premier features of strong confinement, less loss, and 

plasticity tunability. The coupling between an incident 
wave and the plural oscillation of electrons at the 
interface between a metal and a dielectric generates 
surface Plasmon polaritons (SPPs) [8-11]. The 
dielectric-based waveguides include silicon-on-glass 
waveguides [12], photonic crystal fibers [13], and slab 
waveguides [14]. Compared to these waveguides, the 
metal-based hybrid plasmonic waveguides (MHPW) 
are mighty of guiding electromagnetic wave with 
subwavelength confinement smaller than 
the diffraction limit, indicating excellent ability in 
highly integrated optical circuits [15,16]. Recently, in 
order to enhance the SPPs propagation distance, various 
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types of MHPW as wedged, channeled, and metal gap 
plasmonic waveguides have been studied [17-19]. It is 
detected that the SPPs guided by MHPW can attain the 
normalized mode area of ~10−ଷ − 1 and long 
propagation length of ~ 0.01 − 100 mm at the 
wavelength of 1.55 μm. Nevertheless, immediately 
expanding the waveguide design to the MIR spectrum 
will direct to a considerable decay in the subwavelength 
confinement, making it inappropriate for compact 
integration [20]. Therefore, by utilizing the dielectric 
materials without electrostatic adjustability, like noble 
metals, all forenamed waveguides suffer from the 
intrinsic defect not tunable once the waveguides are 
fixed after construction.  

 Graphene, as a monolayer of carbon atoms, has 
absorbed a number of researchers owing to its unique 
electrical, optical, and mechanical properties [21,22]. 
Graphene is attended to as one of the Excellent 
plasmonic materials to replace metals with 
comparatively great field confinement, long 
propagation length, exclusively with important 
preference of being strongly tunable through chemical 
doping or electrostatic doping, due to supporting 
surface plasmon polaritons in the infrared spectrum 
[23,24]. 

 The graphene plasmonic waveguides represent field 
confinement with the wavelength two orders less than 
that in free space [25-28]. The graphene adjustable 
attributes through electrostatic doping without altering 
the device dielectric materials and geometric 
configuration, enable the graphene with a vast potential 
application in different tunable infrared systems. In 
recent years, many graphene-based  plasmonic devices 
(GPDs) such as absorbers [29], sensing [30,31], 
biosensors [32], switches [33], modulators [5,34], and 
waveguides [35-38] have been investigated. 

 In this regard, for example, L Ye et al. [5] investigated 
a GHPW for MIR propagation and modulation in the 
frequency area of 10 to 20 THz. They have displayed 
their proposed waveguide which can attain excellent 
SPPs propagation performance with propagation length 
of 12.1μm-16.7μm, attenuation of 0.28-0.36 dB/μm, 
and transmission of 92-94% in the frequency area of 10 
to 20 THz with the graphene Fermi energy of 1.0 eV 
[5]. 

 In the present research, we design a unique GHPW for 
propagation and modulation of extremely broadband 
MIR surface plasmon polaritons. The proposed unique 
structure has schemed of a graphene layer in the middle, 
a high-density polyethylene (HDPE) gating layer, two 
interior  dielectric buffer layers, and two exterior  semi-
cylinder Germanium substrates symmetrically 
embedded on both edges of the graphene. Firstly, we 
model the SPPs mode distributions, propagation 
distance, effective refractive index, normalized mode 
area, and figure of merit of the hybrid plasmonic 
waveguide.  The  designed waveguide can attain 
excellent SPPs propagation efficiency with propagation 
length of 11-29μm, attenuation of 0.21-0.4 dB/μm, and 
transmission of 91-96% in the frequency range of 10 to 
30 THz at the graphene Fermi energy of 1.0 eV.  

  

 

 

Figure 1. (a) Three-dimensional structure of the proposed 
waveguide GHPW. (b) cross-section of the waveguide.  

Hence, the designed structure supports higher figure of 
merit, longer propagation distance and lower 
attenuation compared to similar plasmonic waveguides 
(e.g., see [5]). This research  prepares a new path to 
modeling GHPW for extremely effective broadband 
MIR propagation and modulation and may propose 
some exciting solutions for MIR devices.   
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2 Design and techniques  

 The structure of the proposed novel GHPW is indicated 
in Fig. 1, which is composed of two equal exterior semi-
cylindrical substrates and two similar interior delimiter 
layers located on both edges of graphene in the 
waveguide middle. The substrate layers are supposed to 
be germanium (Ge) with height H=600 nm and the 
relative permittivity 𝜀ୋୣ = 16.2. Also, the delimiter 
layers are presumed to be magnesium fluoride (MgFଶ) 
with height H=600 nm and the relative permittivity 
εమ

= 1.7 [39–41]. The dual germanium semi-

cylinder, with their radius as R=370 nm, expand into the 
MgFଶ layers to amplify  interaction of electromagnetic 
wave  to graphene and SPPs confinement. A high-
density polyethylene (HDPE) slab with the relative 
permittivity εୌୈ = 2.37 [42] and height L = 20 nm 
are embedded within the lower MgFଶ  layer with 
thickness l=10 nm underneath the graphene for gating 
design. The gate voltage is exerted to the graphene and 
HDPE layer to tune the Fermi energy of graphene, as 
demonstrated in Fig. 1(a).   

 In this paper, we apply the finite element technique for 
modeling and analyzing the features of the designed 
GHPW. The graphene light features are described by a 
surface conductivity σ, which can be computed via the 

Kubo Integral formulation with the interband and 
intraband conductivity terms [5] 
 
 
𝜎(𝜔, 𝐸, 𝜏, 𝑇) = 𝜎୧୬୲୰ୟ(𝜔, 𝐸, 𝜏, 𝑇)

+ 𝜎୧୬୲ୣ୰(𝜔, 𝐸, 𝜏, 𝑇),                          (1) 

𝜎୧୬୲୰ୟ(𝜔, 𝐸, 𝜏, 𝑇)

=
𝑗𝑒ଶ

𝜋ℏଶ(𝜔 − 𝑗/𝜏)
න ቆ

𝜕𝑓 (𝜉, 𝐸, 𝑇)

𝜕𝜉

ஶ



−
𝜕𝑓 (−𝜉, 𝐸, 𝑇)

𝜕𝜉
ቇ 𝜉𝑑𝜉,                     (2) 

𝜎୧୬୲ୣ୰(𝜔, 𝐸, 𝜏, 𝑇) =
−𝑗𝑒ଶ ቀ𝜔 −

𝑗
𝜏ቁ

𝜋ℏଶ
 

× න ቌ
𝑓 (−𝜉, 𝐸, 𝑇) − 𝑓 (𝜉, 𝐸, 𝑇)

(𝜔 − 𝑗/𝜏)ଶ − 4(
𝜉
ℏ

)ଶ
ቍ 𝑑𝜉,                  (3)

ஶ



 

and 

𝑓 (𝜉, 𝐸, 𝑇) = {exp [(𝜉 − 𝐸)/𝑘𝑇] + 1}ିଵ,             (4) 

where E is the chemical potential or Fermi energy, it 
can be set from 0.0 to 1.0 eV through the gating 

structures [43-45]. Also, quantities of ω, τ = μE/ev
ଶ, 

T, e, ξ, ℏ = h/2π, k and fୢ(ξ, E, T) are the angular 
frequency, the relaxation time, the temperature, the 
electron charge, energy, the reduced Plank constant, the 
Boltzmann constant, and the Fermi-Dirac distribution 
function, respectively. Here, it can be supposed that the 
temperature T = 300 K, the Fermi velocity v =

10 m/s and the graphene relaxation time 𝜏 = 1.2 ps 
are obtained via the graphene carrier mobility 𝜇 [46-49].  
The graphene dielectric function can be measured as in 
[35], 

𝜀 = 1 + 𝑖𝜎𝜂 𝑘∆,           ⁄                                            (5)                                                             

where η refers to air impedance, k is the 
wavenumber, and ∆= 1 nm shows the d layer graphene 
thickness. These are the key plasmonic parameters that 
can be calculated through the changes in physical 
dimensions and materials. The loss tangent function is 
defined as [5], 

tan δ = |σ୰/σ୧|,                                                                (6) 

where σ୧ and σ୰ are the imaginary and real parts of 
graphene surface conductivity σ, respectively. The 

index of effective refractive for the guided mode can be 
represented as [5], 

𝑛ୣ = 𝑘 𝑘⁄ ,                                                                     (7) 

where 𝑘 is the constant of propagation in free space 
and k is the propagation constant of the waveguide. The 
figure of merit (FOM) can be defined as [5] 

FOM = 𝑛 𝑛⁄ ,                                                                  (8) 

where n୧ and n୰ are the imaginary and real parts and 
imaginary part of  𝑛ୣ, respectively. The imaginary part 
of  𝑛ୣ, which is in charge of losses of propagation, 
explains the guided modes propagation length, which 
can be defined as [5] 

𝐿୮ = 1 2𝑘 𝑛.                      ⁄                                           (9) 

The normalized mode area is defined as follows [5]  

𝐴 = 𝐴୫ 𝐴 =
1

𝐴

∫ 𝑆(𝑥, 𝑦) 𝑑𝑥 𝑑𝑦
ାஶ

ିஶ

max [𝑆(𝑥, 𝑦)]
.ൗ                     (10) 

with 
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𝑆(𝑥, 𝑦) =
1

2
Re ቊ

𝑑[𝜀𝜀(𝑥, 𝑦)𝜔]

𝑑𝜔
ቋ |𝐸(𝑥, 𝑦)|ଶ

+
1

2
𝜇|𝐻(𝑥, 𝑦)|ଶ,                             (11) 

where 𝐴୫ is the effective mode area, S(x, y) is the 

electromagnetic energy density, and 𝐴 = 𝜆
ଶ/4 is the 

diffraction-limited mode area in free space, 
respectively. Also 𝜆  is the wavelength in free space. In 
the proposed GHPW, the dependence of gate voltage 𝑉 

on the Fermi energy 𝐸 can be achieved by [5,43] 

𝑉 =
2𝑒𝑙

𝜋𝜀𝜀ℏଶ𝑣
ଶ න 𝜉[𝑓 (𝜉, 𝐸, 𝑇)

ஶ



− 𝑓 (𝜉, 2𝐸, 𝑇)] 𝑑𝜉,                         (12) 

where ε୰ = εమ
. The attenuation 𝑎 and transmission  

coefficients 𝑡 of the proposed waveguide are defined by 
[35, 50] 

𝑎 =
40𝜋 Im(𝑛ୣ)

𝜆 𝐿𝑛10
     &     𝑡 = 10ି/ଵ,                    (13) 

Where the modulation depth of the proposed waveguide 
is des cribed by recent relations. 

3. Results and discussion 

 Firstly, the surface conductivity 𝜎 and the loss tangent 
tan δ of graphene is considered at the MIR region. 
Figure 2 shows the 𝜎 components and loss tan δ of 
graphene on frequency at Fermi energy 𝐸 = 0.2, 
0.6 and 1 eV. Figures 2(a)  and 2(c) show that the real 
part and  the absolute value of graphene surface 
conductivity (𝜎୰ and ห𝜎ห) are positive and decrease 
drastically by increasing frequency from 10 THz to 30 
THz. Figure 2(b) also shows that  

 

 

 

 

Figure 2. (a)-(d) display Dependence of the σ୰, the σ୧, the หσห and 
the tan δ of graphene respectively on frequency with Fermi energy 
𝐸 = 0.2, 0.6, and 1 eV.  
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Figure 3. The distributions of electric field  of the proposed structure 
for (a) [f, 𝐸, R] = [10 THz, 0.2 eV, 370 nm], (b) [f, 𝐸, R] =

[20 THz, 0.2 eV, 370 nm], (c) [f, 𝐸, R] = [15 THz, 1 eV, 550 nm], 
(d) [f, 𝐸, R] = [30 THz, 1 eV, 550 nm], (e) [f, 𝐸, R] =

[10 THz, 0.2 eV, 550 nm] and (f) [f, 𝐸, R] =

[20 THz, 0.2 eV, 550 nm]. 

 

 

 

 
Figure 4. (a)-(d) Dependence of the L୮, the n୰, the FOM, and  𝐴 on the f at 

different Fermi energies with R = 370 nm.   

the imaginary part of the graphene surface conductivity 
𝜎୧ is negative and increases by increasing frequency. 
Figure 2(d) demonstrates the tan δ amounts decrease 
from 0.0130 to 0.0044 at both 𝐸 = 0.6 and 1.0 eV, 
while its amount decreases from 0.0130 to 0.005 for 
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𝐸 = 0.2 in frequency confining from 10 THz to 30 
THz.  

 We present the electromagnetic field distributions for 
the hybrid plasmonic mode with TM (transverse 
magnetic) for different radius R of semi-cylinder of the 
waveguide, frequency, and Fermi energy in Fig. 3. It 
can be observed that the maximum of the electric field 
value is distributed between double semi-cylinder 
around the graphene in waveguide center with R=550 
nm, which its confinement is much stronger than with 
R=370 nm. Because of the unique structure of the 
waveguide, the interaction of electromagnetic waves is 
considerably augmented in the area between the dual 
semi-cylinder.   

 The dependence of the propagation length L୮, the real 

part of effective refractive index n୰, the figure of merit 
FOM, and the normalized mode area 𝐴 on the frequency 
ranging from 10 to 30 THz are shown in Fig. 4 at 
different Fermi energies with R = 370 nm. The diagram 
of L୮ on the frequency at 𝐸 = 0.6 eV and 𝐸 = 1 eV 

grows to their peak amounts and afterward diminishes, 
whereas  the L୮ at 𝐸 = 0.2 eV diminishes contiguously. 

The maximum value of the propagation length is L୮ =

28.92 nm at the frequency of f = 19.75 THz with 𝐸 =

1 eV, which is a long propagation length compared to 
the proposed GHPW in reference [5], [see Fig. 4(a)]. 
Figure 4(b) illustrates the n୰ variations of the proposed 
GHPW on frequency for different Fermi energies. At 
the fixed amount of E, the n୰ grows when the 
frequency grows. While at a constant amount of the 
frequency, the n୰ diminishes when the value of 𝐸 
grows. Figure 4(c) shows that the FOM increases as the 
frequency increases, implying a larger FOM is obtained 
at a more extensive frequency finish. Figure 4(d) shows  
𝐴 for the waveguide as the MIR frequency changes 
from 10 THz to 30 THz at different 𝐸. It  displays that 
the 𝐴 value of the designed structure achieves ~10-3, 
which is sub-wavelength strong confinement of the 
proposed structure.  

 Figure 5 presents the diagram of L୮, n୰, FOM, and 𝐴 
on the radius R of semi-cylinder of GHPW at 
frequencies of 10, 20 and 30 THz with 𝐸 = 1 eV. In 
figure 5(a), the L୮ related to all three different 
frequencies on the radius R grows to their peak amounts 
and before diminishing. The maximum L୮ for 
frequencies of 10, 30 THz are equal to 18.47 nm and 
12.85 nm at R=510 nm, respectively, but the ultimate 

L୮ for frequency of 20 THz  appears at the radius R =

405 nm. Figures 5(b) and 5(c) display 

 
Figure 5. (a)-(d) Present the diagram of the L୮, the n୰, the FOM, and 

the 𝐴 on the radius R of semi-cylinder of GHPW, respectively, at 
frequencies of 10, 20, and 30 THz with  𝐸 = 1 eV.  
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the dependences of the n୰ and FOM on the R of the 
semi-cylinder waveguide for different frequencies, 
respectively. It can be seen that the n୰ and FOM 
decrease significantly as the frequency decreases. Fixed 
the frequency, the n୰, and the FOM increase with the 
increasing radius R. Figure 5(d) illustrates the diagram 
of 𝐴 on the radius R semi-cylinder GHPW for different 
frequencies. It can be seen that when the frequency 
decreases, the lower 𝐴 is achieved via setting the radius 
R of the semi-cylinder structure. It is found that at f =

10 THz and R=550 nm, the lowest 𝐴 is decreased to 
1.74 × 10ିସ. Therefore, for further decrease of 𝐴 to 
practical empirical application in modulators of 
nanoscale, the frequency and radius R of the semi-
cylinder can be reduced.  

 In the following, we study the effects of the frequency, 
the radius R semi-cylinder of graphene-based hybrid 
plasmonic waveguide, and the relative permittivity of 
the gating layer materials on the  L୮ and n୰ of the 

proposed waveguide. The comparison of L୮ and n୰ of 

the designed waveguide with various gating layer 
materials of aluminum oxide (AlଶOଷ), silicon dioxide 
(SiOଶ), and high-density polyethylene (HDPE) are 
presented in Fig. 6, where the dielectric constants of the 
gating layer materials are supposed as ε୪మయ

= 8 and 

εୱ୧୭మ
= 3.7 [5]. Figures 6(a) and 6(b) show the 

dependences of the L୮ and n୰ designed structure with 

various gating layer materials on the frequency of 
waveguide. Accordingly,  SPPs propagation attributes 
may be controlled via the difference in the dielectric 
constant of the gating layer. Owing to the smallest 
dielectric constant of the HDPE, the L୮ (n୰) of the 

designed structure with HDPE gating layer has the 
largest (smallest) amount with ratio to the waveguides 
with SiOଶ and AlଶOଷ gating layers. The dependences of 
the L୮ and n୰ GHPW structure with various gating layer 

materials, on radius R of the waveguide at f = 20 THz 
in Figs. 6(c) and 6(d) are shown.  

 Eventually, we investigate the modulation efficiency of 
SPPs mode for the designed waveguide. In the GHPW, 
the 𝐸 can be tuned via gate voltage 𝑉 [see Fig. 1(a)]. 
The dependence of 𝑉 on 𝐸   by Eq. (12) is shown in 

Fig. 7(a). It is detected that the needed amounts of Vg are 
about 1.84 and 44.87 V for attaining the 𝐸  of 0.2 and 
1.0 eV, respectively.  Using the graphene adjustability  
property, the broadband SPPs modulation of the 

waveguide absorber may be obtained. 

 

Figure 6. (a) and (b) show the dependences of the L୮ and n୰ designed 
structure with different gating layer materials, on the frequency of waveguide 
at R=370 nm. Also, the diagram of the L୮ and n୰ GHPW structure with 
various gating layer materials, on radius R of the waveguide at f=20 THz are 
exhibited in panels (c) and (d). 
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 Furthermore, to the assessment of the modulation 
efficiency, the dependency of attenuation 𝑎 (dB/μm) 
and transmission  coefficient t on 𝐸 at the frequencies 
10, 20, and 30 THz are demonstrated in Figs. 7(b) and 
7(c), respectively, where 𝑎 and t are described with Eq. 
(13). It is detected that 𝑎 has a considerable value at the 
beginning with 𝐸 <  0.1 eV, and it continuously 
decreases with the 𝐸 increasing at different 
frequencies. For example, 𝑎 can be rapidly reduced 
from 1100 to 0.23 dB/μm, on 𝐸, and t is increased from 
0 to 0.95 on the 𝐸 at f = 20 THz.  Because of the 
matchless waveguide configuration, greatly augmented 
interaction of the electromagnetic wave with graphene 
and subwavelength SPPs confinement in the region 
between the dual semi-cylinder can be attained. The 
attenuation modulation features of this proposed 
waveguide which are superordinate to the broadband 
waveguide modulator is reported, which has a typical 
attenuation modulation e.g., ranging from 3.39 dB/μm 
to 50.94 dB/μm on the frequency at range 10 to 30 THz 
with 𝐸 = 1 eV [5]. Here, we tune the graphene Fermi 
energy from 𝐸 = 0.2 eV or 𝑉 = 1.84 v as the “OFF” 

state point to 𝐸 = 1.0 eV or 𝑉 = 44.87 v as the “ON” 

state point of the proposed structure. Also, the 
modulation depth is calculated with η =

 (t – t)/t [5, 51]. Figures 7(d) and 7(f) show 
the dependence of attenuation α and transmission t 
coefficient on frequency f in different Fermi energies, 
respectively. Also, Figure 7(f) shows the changes of the 
proposed waveguide modulation depth on frequency. It 
is observed that 𝑎 and t change from 0.15 dB/μm to 0.41 
dB/μm and 91-97% at ON state, respectively. Where 
both of them alter from 0.23 to 0.81 dB/μm and 95%-
82% at OFF state while the frequency increase from 10 
THz to 30 THz. the modulation depth notably augments 
with augmenting frequency f. Here, the designed 
structure can attain the modulation depth higher than 
20% among 10 and 30 THz and reach a peak of 100% 
at f > 28.75 THz.   
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Figure 7. (a) The dependence of  𝑉 on 𝐸, (b) and (c) the dependence 

of 𝑎 (dB/μm) and the t coefficient on 𝐸 in different frequencies, 
respectively. (d) and (e) the dependence of 𝑎 (dB/μm) and t 
coefficient on f in different Fermi energies, respectively.  (f) the 
modulation depth η on f. 

4. Conclusions  

 In this research, the designed waveguide composed of 
dual semi-cylinder Germanium substrates has been 
exhibited for extremely efficacious broadband SPPs 
propagation and modulation in the MIR range. Because 
of the matchless waveguide configuration, greatly 
augmented electromagnetic wave interaction with 
graphene and subwavelength SPPs confinement can be 
attained. It is found that the SPPs mode has a longer 
propagation length (10.67-28.92 μm) in the MIR 
frequency range 10-30 THz with the Fermi energy of 
1.0 eV. Also, it can be seen that the SPPs mode has a 
lesser normalized mode area (~10ିସ) in the MIR and 
the frequency range of 10-30 THz with the Fermi 
energy of 1.0 eV and radius R > 450 nm. By controlling 
the graphene Fermi energy from 0.2-1.0 eV, we have 
illustrated broadband modulation of MIR guided wave 
with a modulation depth larger than 20 % in the 
frequency range of 10-30 THz and a peak of 
approximately100 % at f > 28.75 THz.  The designed 
waveguide proposes a prospective approach for 

superlative broadband MIR SPPs propagation and 
modulation, which may be utilized in different high-
efficiency MIR devices.  
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