Modeling a high-performance broadband mid-infrared modulator using graphene-based hybrid plasmonic waveguide

Document Type : Original Article

Authors

1 Department of Condensed Matter, Faculty of Physics, Alzahra University, Tehran, Iran

2 Department of Physics, Faculty of Science, Imam Khomeini Naval Academy, Nowshahr, Iran

Abstract

A graphene-based-hybrid plasmonic waveguide (GHPW) with a unique geometric structure is designed for surface plasmon polariton guidance and modulation at the frequency area of 10 to 30 THz. The GHPW consists of a graphene layer in the middle, a high-density polyethylene (HDPE) gating layer, two interior dielectric delimiter layers, and two exteriors semi-cylinder Germanium substrates symmetrically embedded on both edges of the graphene. Because of the matchless semi-cylinder structure design, the electromagnetic wave interaction with graphene ultimate subwavelength SPPs strong confinement with long propagation length. Small normalized mode area of ~10-4 and long propagation length of 10.67-28.92 μm at Fermi energy of 1.0 eV is attained for SPPs modes propagation of the GHPW in the frequency bound of 10-30 THz and semi-cylinder radius R > 450 nm, respectively. By controlling the graphene Fermi energy, it is found that the structure has a modulation depth higher than 20 % for the frequency band of 10-30 THz and arrives at the peak of approximately 100 % at a frequency greater than 28.75 THz. To benefit from the great broadband MIR propagation and modulation efficiency, the GHPW may promise different MIR waveguides, modulators, photonic, and optoelectronic devices.

Keywords

Main Subjects

Article Title [Persian]

مدلسازی یک مدولاتور پهن باند در ناحیه فروسرخ میانی با کارایی بالا با استفاده از موجبر پلاسمونیکی مخلوط بر پایه ی گرافن

Authors [Persian]

  • محمدرضا جعفری 1
  • اکبر اسدی 2

1 تهران، دانشگاه الزهرا، دانشکده فیزیک، بخش فیزیک ماده چگال

2 گروه فیزیک، دانشکده علوم، دانشگاه علوم دریایی امام خمینی (ره)، نوشهر، ایران

Abstract [Persian]

یک موجبر پلاسمونیک هیبریدی مبتنی بر گرافن (GHPW) با ساختار هندسی منحصر به فرد برای هدایت و مدولاسیون پلاریتون پلاسمون سطحی (SPP) در محدوده فرکانس 30-10 THz طراحی شده است. این موجبر از یک لایه گرافن در وسط، یک لایه دریچه ای پلی اتیلن با چگالی بالا (HDPE) و دو لایه جداکننده دی الکتریک داخلی و دو زیرلایه ژرمانیوم نیمه استوانه ای تشکیل شده است که به طور متقارن در هر دو لبه گرافن تعبیه شده اند. برای انتشار مدهای SPP در ناحیه فرکانسی 10-30 تراهرتز، ناحیه مدی کوچک( 4-10~) و طول انتشار بلند (10.67-28.92 میکرومتر) در انرژی فرمی 1.0 الکترون ولت، بدست آمده است. با کنترل انرژی فرمی گرافن، مشخص شد که به ازای گستره فرکانسی 30-10 تراهرتز، این ساختار دارای عمق مدولاسیون بالاتر از 20 درصد است و در فرکانس بیشتر از 28.75 تراهرتز به بیشینه مقدار خود می رسد. موجبر پیشنهاد شده، نوید بخش بهره مندی از انتشار پهن باند با راندمان مدولاسیونی بالا، و ایجاد نسل متفاوتی از موجبرهای MIR، مدولاتورها، و دستگاه‌های فوتونیکی و نوری را می دهد.

Keywords [Persian]

  • گرافن
  • پلاسمونیک
  • موجبر
  • مدولاتور
  • فروسرخ میانی
  • روش المان محدود
[1] J. Xu, Z. Ren, B. Dong, X. Liu, C. Wang, Y. Tian and C Lee, “Nanometer-Scale Heterogeneous Interfacial Sapphire Wafer Bonding for Enabling Plasmonic-Enhanced Nanofluidic Mid-Infrared Spectroscopy.” ACS Nano, 14 (2020) 12159.  
[2] B. Fang et al., “Bidirectional mid-infrared communications between two identical macroscopic graphene fibers.” nature communications, 11 (2020) 6368.
[3] A. Tittl et al., “A Switchable Mid-Infrared Plasmonic Perfect Absorber with Multispectral Thermal Imaging Capability.” Advanced Materials, 27 (2015) 4597.
[4] J. Zhang et al., “Fano-Resonance in Hybrid Metal-Graphene Metamaterial and Its Application as Mid-Infrared Plasmonic Sensor.” Micromachines, 11 (2020) 268.
[5] L. Ye, K. Sui, Y. Liu, M. Zhang and Q. Liu, “Graphene-based hybrid plasmonic waveguide for highly efficient broadband mid-infrared propagation and modulation.” Optics Express, 26 (2018) 15935.
[6] M. R. Jafari and M. Omidi, “The effect of quantum ring size on shifting the absorption coefficient from infrared region to ultraviolet region.” Applied Physics A, 125 (2019) 1.
[7] M. R. Jafari and B. Bahrami, “Emission properties of porphyrin compounds in new polymeric PS: CBP host.”  Applied Physics A, 119 (2015) 1491.
[8] D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit.” Nat. Photonics, 4 (2010) 83.
[9] E. Ozbay, “Plasmonics: Merging photonics and electronics at nanoscale dimensions.” Science, 311 (2006) 189.
[10] M. R. Jafari and F. Ebrahimi, “Plasmonic Thermal Conductance of Stack of Metallic Nanorings.” Journal of Sciences Islamic Republic of Iran, 21 (2010) 279.
[11] M. Farhadi, M. Jafari and M. Shahmansouri, “Effective mass dependence of the gyrotropic nihility in a BaM/6H-SiC multilayer structure.” Applied Physics A, 126 (2020) 1.
[12] N. Ranjkesh, M. Basha, A. Taeb, A. Zandieh, S. Gigoyan and S. Safavi-Naeini, “Silicon-on-glass dielectric waveguide—Part I: For millimeter-wave integrated circuits.” IEEE Trans. THz Sci. Technol., 5 (2015) 268.
[13] T. S. Saini, A. Kumar and R. K. Sinha, “Broadband Mid-Infrared Supercontinuum Spectra Spanning 2-15 μm Using As2Se3 Chalcogenide Glass Triangular-Core Graded-Index Photonic Crystal Fiber.”  J. Lightwave Technol., 33 (2015) 3914.
[14] C. Yang, Q. Wu, J. Xu, K. A. Nelson and C. A. Werley, “Experimental and theoretical analysis of THz frequency, direction-dependent, phonon polariton modes in a subwavelength, anisotropic slab waveguide.” Opt. Express, 18 (2010) 26351.
[15] R. Zia, J. A. Schuller, A. Chandran and M. L. Brongersma, “Plasmonics: the next chip-scale technology.” Mater. Today, 9 (2006) 20.
[16] M. R. Jafari, F. Ebrahimi and M. Nooshirvani, “Subwavelength electromagnetic energy transport by stack of metallic nanorings.” Journal of Applied Physics, 108  (2010) 054313.
[17] C. L. Smith, N. Stenger, A. Kristensen, N. A. Mortensen and S. I. Bozhevolnyi, “Gap and channeled plasmons in tapered grooves: a review.” Nanoscale, 7 (2015) 9355.
[18] R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation.” Nat. Photonics, 2 (2008) 496.
[19] Z. Zhang and J. Wang, “Long-range hybrid wedge plasmonic waveguide.” Sci. Rep., 4 (2014) 6870.
[20] Y. Gao, G. Ren, B. Zhu, J. Wang and S. Jian, “Single-mode graphene-coated nanowire plasmonic waveguide.” Opt. Lett., 39 (2014) 5909.
[21] A. K. Geim, “Graphene: status and prospects.” Science, 324 (2009) 1530.
[22] A. N. Grigorenko, M. Polini and K. S. Novoselov, “Graphene plasmonics.” Nat. Photonics, 6 (2012) 749.
[23] A. Asadi, M. R. Jafari, M. Shahmansouri, “Characteristics of a Symmetric Mid-infrared Graphene Dielectric Hybrid Plasmonic Waveguide with Ultra-deep Subwavelength Confinement.” Plasmonics, 17 (2022)1819-1829.
[24] A. Asadi, M. R. Jafari, M. Shahmansouri, “Simulation optimized design of graphene-based hybrid plasmonic waveguide.” Indian Journal of Physics,  Published: 30 January (2023).
[25] X. He, T. Ning, L. Pei, J. Zheng, J. Li and J. Wang, “Deep subwavelength graphene-dielectric hybrid plasmonic waveguide for compact photonic integration.” Results in Physics, 21 (2021) 103834.
[26] V. W. Brar, M. S. Jang, M. Sherrott, J. J. Lopez and H. A. Atwater, “Highly confined tunable mid-infrared plasmonics in graphene nanoresonators.” Nano Lett., 13, (2013) 2541.
[27] M. Shahmansouri, B. Farokhi and R. Aboltaman, “Exchange interaction effects on low frequency surface waves in a quantum plasma slab.” Phys. Plasmas, 24 (2017) 054505.
[28] R. Aboltaman and M. Shahmansouri, “Boundary graphene layer effect on surface plasmon oscillations in a quantum plasma half-space.” Comm. Teor. Phys. 72 (2020) 045501.
[29] L. Jiang, C. Yuan, Z. Li, J. Su, Z. Yi, W. Yao, P. Wu, Z. Liu, S. Cheng and M. Pan, “Multi-band and high-sensitivity perfect absorber based on monolayer graphene metamaterial.” Diamond & Related Materials, 111 (2020) 108227.
[30] F. Jabbarzadeh and A. Habibzadeh-Sharif, “High performance dielectric loaded graphene plasmonic waveguide for refractive index sensing.” Optics Communications, 479 (2021) 126419.
[31] Y. Sharma, R. R. Ghosh, V. Sapra, V. Jalal, K. Ahmed and A. Dhawan, “Plasmonic switches based on arrays of plasmonic nanostructures surrounded by VO2 thin films.” Quantum Sensing and Nano Electronics and Photonics XVI, 10926 (2019) 109262S.
[32] D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. García de Abajo, V. Pruneri and H. Altug, “Mid-infrared plasmonic biosensing with graphene.” Science, 349 (2015) 165.
[33] L. Luo, K. Wang, C. Ge, K. Guo, F. Shen, Z. Yin and Z. Guo, “Actively controllable terahertz switches with graphene-based nongroove gratings.” Photon. Res., 5 (2017) 604.
[34] M. Liu, X. Yin and X. Zhang, “Double-layer graphene optical modulator.” Nano Lett., 12 (2012) 1482.
[35] A. Asadi, M. R. Jafari, M. Shahmansouri, “Characteristics of a Symmetric Mid-infrared Graphene Dielectric Hybrid Plasmonic Waveguide with Ultra-deep Subwavelength Confinement.” Plasmonics, 17 (2022) 1819.
[36] D. Teng, Y. Wang, T. Xu, H. Wang, Q. Shao and Y. Tang, “Symmetric Graphene Dielectric Nanowaveguides as Ultra-Compact Photonic Structures,” Nanomaterials 11 (2021) 1281.
[37] M. Shahmansouri and M. Mahmodi-Moghadam, “Quantum electrostatic surface waves in a hybrid plasma waveguide: Effect of nano-sized slab.” Phys. Plasmas, 24 (2017) 102107.
[38] M. Mahmodi-Moghadam and M. Shahmansouri, “Theoretical study of surface waves in a magnetized conductor-gap-dielectric nano-structure.” Physica Scr., 95 (2020) 085606.
[39] Y. Zhao et al., “Enhanced SERS Stability of R6G Molecules with Monolayer Graphene.” J. Phys. Chem. C, 118 (2014) 11827.
[40] P. Wang, O. Liang, W. Zhang, T. Schroeder and Y. H. Xie, “Ultra-Sensitive Graphene-Plasmonic Hybrid Platform for Label-Free Detection.” Adv Mat., 25 (2013) 4918.
[41] T. Tite et al., “Graphene-based textured surface by pulsed laser deposition as a robust platform for surface enhanced Raman scattering applications.” Appl. Phys. Lett., 104 (2014) 41912.
[42] Y. Hajati, Z. Zanbouri and M. Sabaeian, “Low-loss and high-performance mid-infrared plasmon-phonon in graphene-hexagonal boron nitride waveguide.” Journal of the Optical Society of America B, 35 (2018) 446.  
[43] G. W. Hanson, “Dyadic Green’s functions for an anisotropic, non-local model of biased graphene.” IEEE Trans. Antenn. Propag., 56 (2008) 747.
[44] Q. Zhang, X. Li, M. M. Hossain, Y. Xue, J. Zhang, J. Song, J. Liu, M. D. Turner, S. Fan, Q. Bao, and M. Gu,
“Graphene surface plasmons at the near-infrared optical regime.” Sci. Rep., 4 (2014) 6559.
[45] W. Xu, Z. H. Zhu, K. Liu, J. F. Zhang, X. D. Yuan, Q. S. Lu, and S. Q. Qin, “Toward integrated electrically
controllable directional coupling based on dielectric loaded graphene plasmonic waveguide.” Opt. Lett., 40
(2015) 1603.
[46] J. S. Gómez-Díaz, M. Esquius-Morote, and J. Perruisseau-Carrier, “Plane wave excitation-detection of nonresonant plasmons along finite-width graphene strips.” Opt. Express, 21 (2013) 24856.
[47] K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, and H. L. Stormer, “Ultrahigh electron mobility in suspended graphene.” Solid State Commun., 146 (2008) 351.
[48] W. Gao, J. Shu, C. Qiu, and Q. Xu, “Excitation of plasmonic waves in graphene by guided-mode resonances.” ACS Nano, 6 (2012) 7806.
[49] C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, “Boron nitride substrates for high-quality graphene electronics.” Nat. Nanotechnol., 5 (2010) 722.
[50] X. Chen, et al., “A Broadband Optical Modulator Based on a Graphene Hybrid Plasmonic Waveguide.” Journal of Lightwave Technology, 34 (2016) 4948.
[51] Y. Zhang, S. Qiao, S. Liang, Z. Wu, Z. Yang, Z. Feng, H. Sun, Y. Zhou, L. Sun, Z. Chen, X. Zou, B. Zhang, J. Hu, S. Li, Q. Chen, L. Li, G. Xu, Y. Zhao, and S. Liu, “Gbps terahertz external modulator based on a composite metamaterial with a double-channel heterostructure.” Nano Lett., 15 (2015) 3501.