[1] M. A. Nielsen, I. Chuang, “Quantum Computation and Quantum Information.” Cambridge University, Cambridge (2000).
[2] M. Czachor, “Einstein-Podolsky-Rosen-Bohm experiment with relativistic massive particles.” Physical Review A, 55 (1997) 77.
[3] R. M. Gingrich, C. Adami, “Quantum entanglement of moving bodies.” Physical Review Letters, 89 (2002) 270402.
[4] D. C. M. Ostapchuk, R. B. Mann, “Generating entangled fermions by accelerated measurements on the vacuum.”
Physical Review A, 79 (2009) 042333.
[5] P. M. Alsing, I. Fuentes-Schuller, “Observerdependent entanglement.” Classical and Quantum Gravity, 29 (2012) 224001.
[6] J. L. M. Zepeda, J. Rueda Paz, M. Avila Aoki, S. H. Dong “Pentapartite Entanglement Measures of GHZ and W-Class State in the Noninertial Frame.” Entropy, 24 (2022) 754.
[7] A. Belenchia, M. Carlesso. Bayraktar, D. Dequal,I. Derkach, G. Gasbarri, W. Herr, Y. L. Li, M. Rademacher, J. Sidhu, D. K. L. Oi, S. T. Seidel, R. Kaltenbaek, C. Marquardt, V. C. Usenko, L. Wrner, A. Xuereb, M. Paternostro, A. Bassi, “Quantum physics in space.” Physics Reports, 951 (2022) 1.
[8] D. Cozzolino, B. Da Lio, D. Bacco, and L. K. Oxenløwe, “High‐dimensional quantum communication: benefits, progress, and future challenges.” Advanced Quantum Technologies, 2 (2019) 1900038.
[9] Luca Calderaro et al., “Towards quantum communication from global navigation satellite system.” Quantum Science and Technology, 4 (2019) 015012.
[10] S. L. Braunstein and C. M. Caves.: Statistical distance and the geometry of quantum states. Physical Review Letters, 72 (1994) 3439.
[11] S. L. Braunstein, C. M. Caves, and G. J. Milburn, “Generalized uncertainty relations: Theory, examples, and Lorentz invariance.” Annals of Physics (N.Y.) 247 (1996) 135.
[12] . Giovannetti, S. Lloyd, and L. Maccone, “Advances in quantum metrology.” Nature Photonics, 5 (2011) 222.
[13] Y. Chen and H. Yuan, “Maximal quantum Fisher information matrix.” New Journal of Physics, 19 (2017) 063023.
[14] K. Gietka, J. Chwedeczuk, T. Wasak, and F. Piazza, “Multipartite-Entanglement Dynamics in Regular-to-Ergodic Transition: a Quantum-Fisher-Information approach.” Physical Review B, 99 (2019) 064303.
[15] J. Yao, “The effects of vacuum fluctuations on teleportation of quantum Fisher information." Scientific Reports, 7 (2017) 40193.
[16] M. Jafarzadeh, H. Rangani Jahromi, and M. Amniat Talab, “Teleportation of quantum resources and quantum Fisher information under Unruh effect.” Quantum Information Processing, 17 (2018) 165.
[17] N. Metwally, “Unruh acceleration effect on the precision of parameter estimation.” arXiv: 1609.02092 (2016).
[18] N. Metwally, “Estimation of teleported and gained parameters in a non-inertial frame.” Laser Physics Letters, 14 (2017) 045202.
[19] G. Adesso, I. F. Schuller, M. Ericsson, “Continuous-variable entanglement sharing in noninertial frames.” Physical Review A, 76 (2007) 062112.
[20] H. Lotfipour, S. Shahidani, R. Roknizadeh, M. H. Naderi, “Response of a mechanical oscillator in an optomechanical cavity driven by a finite bandwidth squeezed vacuum excitation.” Physical Review A, 93 (2016) 053827.
[21] M. D. Noia1, F. Giraldi, F. Petruccione, “Entanglement concentration for two-mode Gaussian states in non-inertial frames.” Journal of Physics A: Mathematical and Theoretical, 50 165302 (2017) [22] D. Stoler, “Equivalence classes of minimum uncertainty packets.” Physical Review D, 1 (1970) 3217.
[23] R. E. Slusher, L. W. Hollberg, B. Yurke, J. C. Mertz, J. F. Valley Slusher, “Observation of squeezed states generated by four-wave mixing in an optical cavity.” Physical Review Letters, 55 (1985) 2409.
[24] F. Acernese et al. (Virgo Collaboration), “Increasing the astrophysical reach of the advanced Virgo detector via the application of squeezed vacuum states of light.” Physical Review Letters, 123 (2019) 2331108.
[25] S. Davuluri and Y. Li, “Absolute rotation detection by Coriolis force measurement using optomechanics.” New Journal of Physics, 18 (2016) 103047.
[26] L. Bai, L. Zhang, Y. Yang, R. Chang, Y. Qin, J. He, X. Wen, and J. Wang, “Enhancement of spin noise spectroscopy of rubidium atomic ensemble by using the polarization squeezed light.” Optics Express, 30 (2022) 1925.
[27] A. M. Braczyk and T. C. Ralph, “Teleportation using squeezed single photons.” Physical Review A, 78 (2008) 052304.
[28] Gerardo Adesso and Fabrizio Illuminati, “Entanglement in continuous-variable systems: recent advances and current perspectives.” Journal of Physics A: Mathematical and Theoretical, 40 (2007) 7821.
[29] G. Adesso, S. Ragy, and D. Girolami, "Continuous variable methods in relativistic quantum information: characterization of quantum and classical correlations of scalar field modes in noninertial frames." Classical and Quantum Gravity, 29 (2012) 224002.
[30] L. S. Costanzo et al., “Properties of hybrid entanglement between discrete- and continuous-variable states of light.” Physica Scripta, 90 (2015) 074045.
[31] R. Pakniat, M. K. Tavassoly, M. H. Zandi, “Entanglement swapping and teleportation based on cavity QED method using the nonlinear atom-field interaction: Cavities with a hybrid of coherent and number states.” Optics Communications, 382 (2017) 381.
[32] J. Rigas, O. Guhne, N. Lutkenhaus, "Entanglement verification for quantum-key distribution systems with an underlying bipartite qubit-mode structure." Physical Review A, 73 (2006) 012341.
[33] S. W. Lee, H. Jeong, “Near-deterministic quantum teleportation and resource-efficient quantum computation using linear optics and hybrid qubits.” Physical Review A, 87 (2013) 022326.
[34] H. Jeong, A. Zavatta, M. Kang, S. W. Lee, L. S. Costanzo, S. Grandi, T. C. Ralph, M. Bellini, “Generation of hybrid entanglement of light.” Nature Photonics, 8 (2014) 564.
[35] O. Morin, K. Huang, J. Liu, H. L. Jeannic, C. Fabre, J. Laurat, “Remote creation of hybrid entanglement between particle-like and wave-like optical qubits. Nature Photonics, 8 (2014) 570.
[36] J. R. Glauber, “Coherent and incoherent states of the radiation field.” Physical Review, 131 (1963) 2766.
[37] E. C. G. Sudarshan, “Equivalence of semiclassical and quantum mechanical descriptions of statistical light beams.” Physical Review Letters, 10 (1963) 277.
[38] J. R. Klauder, “Continuous-representation theory. I. Postulates of continuous-representation theory.” Journal of Mathematical Physics, 4 (1963) 1055.
[39] R. M. Wald.: Quantum Field Theory in Curved Spacetime and Black Hole Thermodynamics, University of Chicago Press, Chicago (1994).
[40] J. Liu, X. Jing, and X. Wang, “Phase-matching condition for enhancement of phase sensitivity in quantum metrology.” Physical Review A, 88 (2013) 042316.
[41] Y. M. Zhang, X. W. Li, W. Yang, and G. R. Jin, “Quantum Fisher information of entangled coherent state in the presence of photon losses: exact solution.” Physical Review A, 88 (2013) 043832.
[42] T. C. Ralph, G. J. Milburn, and T. Downes, “Quantum connectivity of space-time and gravitationally induced decorrelation of entanglement.” Physical Review A, 79 (2009) 22121.
[43] J. S. Sidhu et al., “Advances in space quantum communications.”, arXiv:2103.12749 (2021).
[44] D. Dequal et al., “Feasibility of satellite-to-ground continuous-variable quantum key distribution.” npj Quantum Information, 7 (2021) 3.
[45] J. F. Fitzsimons, “Private quantum computation: an introduction to blind quantum computing and related protocols.” npj Quantum Information, 3 (2017) 23.