Entanglement, QFI, and squeezing of hybrid state in the non-inertial frame

Document Type : Original Article

Authors

Department of Engineering Sciences and Physics, Buein Zahra Technical University, Buein Zahra, Qazvin, Iran

Abstract

We study the effect of the acceleration of the observer on the quantum Fisher information and entanglement using a hybrid state. The two-partite entangled hybrid state consists of discrete (vacuum and single photon) and continuous (coherent) variable states. When one of the observers (e.g., Rob) is uniformly accelerated with respect to the other partner, Alice, we find that quantum Fisher information has a more stable structure than entanglement. Results show that quantum Fisher information decreases with the increase of the acceleration but remains finite in the limit of infinite acceleration which is in contrast with entanglement. Moreover, the effect of acceleration is investigated on the value of two-mode squeezing.

Keywords

Main Subjects

Article Title [Persian]

درهمتنیدگی، QFI و چلاندگی حالت آمیخته در چارچوب نالخت

Authors [Persian]

  • سیده ربابه میری
  • فاطمه احمدی

گروه علوم مهندسی و فیزیک، مرکز آموزش عالی فنی و مهندسی بوئین زهرا، بوئین زهرا، قزوین ایران

Abstract [Persian]

تأثیر شتاب ناظر را بر روی اطلاعات فیشر کوانتومی و درهم تنیدگی با استفاده از یک حالت هیبریدی مطالعه می‌کنیم. حالت هیبرید درهم تنیده دو بخشی از حالت های متغیر گسسته (خلاء و تک فوتون) و پیوسته (همدوس) تشکیل شده است. وقتی یکی از ناظران (مثلا راب) نسبت به شریک دیگر یعنی آلیس به طور یکنواخت شتاب می گیرد، متوجه می شویم که اطلاعات فیشر کوانتومی ساختار پایدارتری نسبت به درهم تنیدگی دارد. نتایج نشان می‌دهد که اطلاعات فیشر کوانتومی با افزایش شتاب کاهش می‌یابد اما در حد شتاب بی‌نهایت که در تضاد با درهم تنیدگی است، محدود می‌ماند. علاوه بر این، اثر شتاب بر روی مقدار چلاندگی دو حالته بررسی شده است.

Keywords [Persian]

  • درهمتنیدگی
  • چلاندگی دومدی
  • کوانتوم فیشر
  • مختصات ریندلر
[1] M. A. Nielsen, I. Chuang, “Quantum Computation and Quantum Information.” Cambridge University, Cambridge (2000).
[2] M. Czachor, “Einstein-Podolsky-Rosen-Bohm experiment with relativistic massive particles.” Physical Review A, 55 (1997) 77.
[3] R. M. Gingrich, C. Adami, “Quantum entanglement of moving bodies.” Physical Review Letters, 89 (2002) 270402.
[4] D. C. M. Ostapchuk, R. B. Mann, “Generating entangled fermions by accelerated measurements on the vacuum.”
Physical Review A, 79 (2009) 042333.
[5] P. M. Alsing, I. Fuentes-Schuller, “Observerdependent entanglement.” Classical and Quantum Gravity, 29 (2012) 224001.
[6] J. L. M. Zepeda, J. Rueda Paz, M. Avila Aoki, S. H. Dong “Pentapartite Entanglement Measures of GHZ and W-Class State in the Noninertial Frame.” Entropy, 24 (2022) 754.
[7] A. Belenchia, M. Carlesso. Bayraktar, D. Dequal,I. Derkach, G. Gasbarri, W. Herr, Y. L. Li, M. Rademacher, J. Sidhu, D. K. L. Oi, S. T. Seidel, R. Kaltenbaek, C. Marquardt, V. C. Usenko, L. Wrner, A. Xuereb, M. Paternostro, A. Bassi, “Quantum physics in space.” Physics Reports, 951 (2022) 1.
[8] D. Cozzolino, B. Da Lio, D. Bacco, and L. K. Oxenløwe, “High‐dimensional quantum communication: benefits, progress, and future challenges.” Advanced Quantum Technologies, 2 (2019) 1900038.
[9] Luca Calderaro et al., “Towards quantum communication from global navigation satellite system.” Quantum Science and Technology, 4 (2019) 015012.
[10] S. L. Braunstein and C. M. Caves.: Statistical distance and the geometry of quantum states. Physical Review Letters, 72 (1994) 3439.
[11] S. L. Braunstein, C. M. Caves, and G. J. Milburn, “Generalized uncertainty relations: Theory, examples, and Lorentz invariance.” Annals of Physics (N.Y.) 247 (1996) 135.
[12] . Giovannetti, S. Lloyd, and L. Maccone, “Advances in quantum metrology.” Nature Photonics, 5 (2011) 222.
[13] Y. Chen and H. Yuan, “Maximal quantum Fisher information matrix.” New Journal of Physics, 19 (2017) 063023.
[14] K. Gietka, J. Chwedeczuk, T. Wasak, and F. Piazza, “Multipartite-Entanglement Dynamics in Regular-to-Ergodic Transition: a Quantum-Fisher-Information approach.” Physical Review B, 99 (2019) 064303.
[15] J. Yao, “The effects of vacuum fluctuations on teleportation of quantum Fisher information." Scientific Reports, 7 (2017) 40193.
[16] M. Jafarzadeh, H. Rangani Jahromi, and M. Amniat Talab, “Teleportation of quantum resources and quantum Fisher information under Unruh effect.” Quantum Information Processing, 17 (2018) 165.
[17] N. Metwally, “Unruh acceleration effect on the precision of parameter estimation.” arXiv: 1609.02092 (2016).
[18] N. Metwally, “Estimation of teleported and gained parameters in a non-inertial frame.” Laser Physics Letters, 14 (2017) 045202.
[19] G. Adesso, I. F. Schuller, M. Ericsson, “Continuous-variable entanglement sharing in noninertial frames.” Physical Review A, 76 (2007) 062112.
[20] H. Lotfipour, S. Shahidani, R. Roknizadeh, M. H. Naderi, “Response of a mechanical oscillator in an optomechanical cavity driven by a finite bandwidth squeezed vacuum excitation.” Physical Review A, 93 (2016) 053827.
[21] M. D. Noia1, F. Giraldi, F. Petruccione, “Entanglement concentration for two-mode Gaussian states in non-inertial frames.” Journal of Physics A: Mathematical and Theoretical, 50 165302 (2017) [22] D. Stoler, “Equivalence classes of minimum uncertainty packets.” Physical Review D, 1 (1970) 3217.
[23] R. E. Slusher, L. W. Hollberg, B. Yurke, J. C. Mertz, J. F. Valley Slusher, “Observation of squeezed states generated by four-wave mixing in an optical cavity.” Physical Review Letters, 55 (1985) 2409.
[24] F. Acernese et al. (Virgo Collaboration), “Increasing the astrophysical reach of the advanced Virgo detector via the application of squeezed vacuum states of light.” Physical Review Letters, 123 (2019) 2331108.
[25] S. Davuluri and Y. Li, “Absolute rotation detection by Coriolis force measurement using optomechanics.” New Journal of Physics, 18 (2016) 103047.
[26] L. Bai, L. Zhang, Y. Yang, R. Chang, Y. Qin, J. He, X. Wen, and J. Wang, “Enhancement of spin noise spectroscopy of rubidium atomic ensemble by using the polarization squeezed light.” Optics Express, 30 (2022) 1925.
[27] A. M. Braczyk and T. C. Ralph, “Teleportation using squeezed single photons.” Physical Review A, 78 (2008) 052304.
[28] Gerardo Adesso and Fabrizio Illuminati, “Entanglement in continuous-variable systems: recent advances and current perspectives.” Journal of Physics A: Mathematical and Theoretical, 40 (2007) 7821.
[29] G. Adesso, S. Ragy, and D. Girolami, "Continuous variable methods in relativistic quantum information: characterization of quantum and classical correlations of scalar field modes in noninertial frames." Classical and Quantum Gravity, 29 (2012) 224002.
[30] L. S. Costanzo et al., “Properties of hybrid entanglement between discrete- and continuous-variable states of light.” Physica Scripta, 90 (2015) 074045.
[31] R. Pakniat, M. K. Tavassoly, M. H. Zandi, “Entanglement swapping and teleportation based on cavity QED method using the nonlinear atom-field interaction: Cavities with a hybrid of coherent and number states.” Optics Communications, 382 (2017) 381.
[32] J. Rigas, O. Guhne, N. Lutkenhaus, "Entanglement verification for quantum-key distribution systems with an underlying bipartite qubit-mode structure." Physical Review A, 73 (2006) 012341.
[33] S. W. Lee, H. Jeong, “Near-deterministic quantum teleportation and resource-efficient quantum computation using linear optics and hybrid qubits.” Physical Review A, 87 (2013) 022326.
[34] H. Jeong, A. Zavatta, M. Kang, S. W. Lee, L. S. Costanzo, S. Grandi, T. C. Ralph, M. Bellini, “Generation of hybrid entanglement of light.” Nature Photonics, 8 (2014) 564.
[35] O. Morin, K. Huang, J. Liu, H. L. Jeannic, C. Fabre, J. Laurat, “Remote creation of hybrid entanglement between particle-like and wave-like optical qubits. Nature Photonics, 8 (2014) 570.
[36] J. R. Glauber, “Coherent and incoherent states of the radiation field.” Physical Review, 131 (1963) 2766.
[37] E. C. G. Sudarshan, “Equivalence of semiclassical and quantum mechanical descriptions of statistical light beams.” Physical Review Letters, 10 (1963) 277.
[38] J. R. Klauder, “Continuous-representation theory. I. Postulates of continuous-representation theory.” Journal of Mathematical Physics, 4 (1963) 1055.
[39] R. M. Wald.: Quantum Field Theory in Curved Spacetime and Black Hole Thermodynamics, University of Chicago Press, Chicago (1994).
[40] J. Liu, X. Jing, and X. Wang, “Phase-matching condition for enhancement of phase sensitivity in quantum metrology.” Physical Review A, 88 (2013) 042316.
[41] Y. M. Zhang, X. W. Li, W. Yang, and G. R. Jin, “Quantum Fisher information of entangled coherent state in the presence of photon losses: exact solution.” Physical Review A, 88 (2013) 043832.
[42] T. C. Ralph, G. J. Milburn, and T. Downes, “Quantum connectivity of space-time and gravitationally induced decorrelation of entanglement.” Physical Review A, 79 (2009) 22121.
[43] J. S. Sidhu et al., “Advances in space quantum communications.”, arXiv:2103.12749 (2021).
[44] D. Dequal et al., “Feasibility of satellite-to-ground continuous-variable quantum key distribution.” npj Quantum Information, 7 (2021) 3.
[45] J. F. Fitzsimons, “Private quantum computation: an introduction to blind quantum computing and related protocols.” npj Quantum Information, 3 (2017) 23.