Investigation of Zr nanoparticle effects on structural phase stability, micro strains, and flux pinning in BSCCO-Zr/Cu doped HTSC

Document Type : Original Article

Authors

Magnet&Superconducting Research Lab., Faculty of Physics, Alzahra University, Tehran 19938, Iran

Abstract

In this research, the resistivity of the Bi1.66Pb0.34Sr2Ca2Cu3-xZrxO10+δ (Bi-2223) polycrystalline samples (x=0.0, 0.002, 0.0075, and 0.01) synthesized by the sol-gel method, has been investigated under magnetic fields. Also, the structural and morphological properties of ceramic superconductors have been studied by using Xray diffraction (XRD) and Field Emission Scanning Electron Microscopy (FESEM) measurements. It is found that the Bi-2223 structural phase was formed more than other phases in the synthesized samples for x≤0.0075. Based on the resistivity measurements, it is understood that the TC decreases with the increase in the Zr doping and the second superconducting transition is seen for the x≥0.0075. The thermally activated flux creep (TAFC) model has been investigated in synthesized ceramic superconductors. Furthermore, the magneto resistivity behavior of all samples has been analyzed to determine the dependence of the pinning energy with applied magnetic fields and Zr doping. It is found that the pinning energy remarkably decreases with the rise of the Zr doping. Therefore, the creeping of vortices and crossing the energy barrier occur more easily, thus the pinning energy is reduced by increasing the Zr doping. Moreover, a good agreement between the modified TAFC model and the experimental data is concluded for the synthesized compounds.

Keywords

Main Subjects

Article Title [Persian]

بررسی اثرات نانو ذرات Zr بر پایداری فاز ساختاری، میکرو استرین ها، و میخکوبی شار در ابررسانای دمای بالای BSCCO آلاییده با Zr/Cu

Authors [Persian]

  • وحید دادمهر
  • فاطمه شهباز طهرانی
  • صدف وفاجو

آزمایشگاه تحقیقاتی ابررسانا و مغناطیس، دانشکده فیزیک، دانشگاه الزهرا

Abstract [Persian]

در این تحقیق، مقاومت نمونه‌های پلی کریستالی BSCCO (Bi-2223) (x=0.0، 0.002، 0.0075 و 0.01) سنتز شده به روش سل-ژل تحت میدان مغناطیسی مورد بررسی قرار گرفته است. همچنین، خواص ساختاری و مورفولوژیکی ابررساناهای سرامیکی با استفاده از اندازه‌گیری‌های پراش پرتو ایکس (XRD) و میکروسکوپ الکترونی روبشی انتشار میدانی (FESEM) مورد بررسی قرار گرفته است. مشخص شد که فاز ساختاری Bi-2223 بیش از سایر فازها در نمونه های سنتز شده برای x≤0.0075 تشکیل شده است. بر اساس اندازه‌گیری‌های مقاومت، مشخص می‌شود که TC با افزایش دوپینگ Zr کاهش می‌یابد و دومین انتقال ابررسانا برای x≥0.0075 دیده می‌شود. مدل خزش شار فعال شده حرارتی (TAFC) در ابررساناهای سرامیکی سنتز شده بررسی شده است. علاوه بر این، رفتار مقاومت مغناطیسی همه نمونه ها برای تعیین وابستگی انرژی پینینگ با میدان های مغناطیسی اعمال شده و دوپینگ Zr مورد تجزیه و تحلیل قرار گرفته است. دریافتیم که انرژی پینینگ با افزایش دوپینگ Zr بطور قابل ملاحظه ای کاهش می یابد. بنابراین خزش گردشاره ها و عبور از سد انرژی با سهولت بیشتری رخ می دهد و بنابراین انرژی پینینگ با افزایش دوپینگ Zr کاهش می یابد. علاوه بر این، توافق خوبی بین مدل TAFC اصلاح شده و داده‌های تجربی برای ترکیبات سنتز شده به دست آمده است.

Keywords [Persian]

  • ابررسانای دمای بالا
  • میکرواسترین
  • پایداری فاز ساختاری
  • خزش و میخکوبی شار
  • پراش اشعه X
[1] D. C. Green, R. Boston, S. Glatzel, M. R. Lees, S.C. Wimbush, J. Potticary, W. Ogasawara, S. R. Hall, “On the Mechanism of Cuprate Crystal Growth: The Role of Mixed Metal Carbonates.” Advanced Functional Materials, 25 (2015) 4700.
[2] M. Foltyn, S. R. Civale, L. MacManus-Driscoll, J. L. Jia, Q. X. Maiorov, B. Wang, H. Maley, "Materials science challenges for high temperature superconducting wire.”Nature. Materials, 6 (2007) 631.
[3] M. Pakdil, E. Bekiroglu, M. Oz, N. K. Saritekin, G. Yildirim, “Role of preparation conditions of Bi-2223ceramic materials and optimization of Bi-2223 phase in bulk materials with experimental and statistical approaches.” Journal of Alloys and Compounds, 673 (2016) 205.
[4] F. Shahbaz Tehrani, V. Daadmehr, “The superconductivity mechanism in Nd-1111 iron-based superconductor doped by calcium.” Journal of Low-Temperature Physics, 199 (2020) 1299.
[5] E. Hannachi, Baykal, F. Ben Azzouz, “AC susceptibility investigation of YBCO superconductor added by carbon nanotubes.” Journal of Alloys and Compounds, 812 (2020) 152150.
[6] Y. Ding, R. Zhong, J. Schneeloch, G. D. Gu, L. Wang, K. He, S. H. Ji, L. Zhao, X. J. Zhou, C. L. Song, X. C. Ma, Q. K. Xue, Electronic structure of the ingredient planes of the cuprate superconductor Bi2Sr2CuO6+δ: A comparison study with Bi2Sr2CaCu2O8+δ, Physical Review B, 93 (2016) 140504(R).
[7] D. Sharma, R. Kumar, V. P. S. Awana, “DC and AC susceptibility study of sol–gel synthesized Bi2Sr2CaCu2O8+δ superconductor.” Ceramics International, 39 (2013) 1143.
[8] H. Fallah-arani, S. Baghshahi, D. Stornaiuolo, F. Tafuri, D. Massarotti, & N. Riahi-noori, “The influence of heat treatment on the microstructure, flux pinning and magnetic properties of bulk BSCCO samples prepared by sol-gel route.” Ceramics International, 44 (2018) 5209.
[9] N. Darsono, D. Y. K. Raju, “Effects of the sintering conditions on the structural phase evolution and TC of Bi1.6Pb0.4Sr2Ca2Cu3O7 prepared using the citrate sol–gel method.” Journal of Superconductivity and Novel Magnetism, 29 (2016) 1491.
[10] D. Li, H. Zhang, X. Gao, S. Yang, Q. Chen, “Effect of the fabrication process on the electrical properties of polycrystalline Bi1.7Pb0.3Sr2Ca2Cu3O10.” Ceramics International, 42 (2016) 1728.
[11] A. Costa, F. M. Ferreira, N. M. Rasekh, S. Fernandes, A. J. S. Torres, M. A. Madre, M. A. Diez, J .C. Sotelo, “Very Large Superconducting Currents Induced by Growth Tailoring.” Crystal Growth & Design, 15 (2015) 2094.
[12] Y. F. Lv, W. L. Wang, H. Ding, Y. Wang, Y. Ding, R. Zhong, J. Schneeloch, G.D. Gu, L. Wang, K. He, S. H. Ji, L. Zhao, X. J. Zhou, C. L. Song, X. C. Ma, Q. K. Xue, “Electronic structure of the ingredient planes of the cuprate superconductor Bi2Sr2CuO6+δ: A comparison study with Bi2Sr2CaCu2O8+δ.” Physical Review B, 93 (2016) 140504.
[13] Y. F. Lv, W. L. Wang, J. P. Peng, H. Ding, Y. Wang, L. Wang, K. He, S.-H. Ji, R. Zhong, J. Schneeloch, G. D. Gu, C. L. Song, X. C. Ma, Q. K. Xue, “Mapping the Electronic Structure of Each Ingredient Oxide Layer of High-Tc Cuprate Superconductor Bi2Sr2CaCu2O8+δ.” Physical Review Letters, 115 (2015) 237002.
[14] N. Türk, H. Gündoǧmuş, M. Akyol, Z.D. Yakinci, A. Ekicibil, B. Özçelik, “Effect of tungsten (W) substitution on the physical properties of Bi-(2223) superconductors.” Journal of Superconductivity and Novel Magnetism, 27 (2014) 711.
[15] Y. L. Chen, R. Stevens, “2223 Phase Formation in Bi (Pb)-Sr-Ca-Cu-O: I, The Role of Chemical Composition.” Journal of American Ceramic Society, 75 (1992) 1142.
[16] F. H. Chen, H. S. Koo, T. Y. Tseng, “Effect of Ca2PbO4 additions on the formation of the 110 K phase in Bi-Pb-Sr-Ca-Cu-O superconducting ceramics.” Applied Physics Letters, 58 (1991) 637.
[17] J. Yoo, S. Kim, J. W. Ko, Y. K. Kim, “The fabrication of fine and homogenous Bi-2223 precursor powder by a spray pyrolysis process.” Superconductor Science and Technology, 17 (2004) S538.
[18] D. Sharma, R. Kumar, V. P. S. Awana, “DC and AC susceptibility study of sol-gel synthesized Bi2Sr2CaCu2O8+ δ superconductor.” Ceramics International, 39 (2013) 1143.
[19] N. Darsono, D. Y. K. Raju, “Effects of the Sintering Conditions on the Structural Phase Evolution and Tc of Bi1.6Pb0.4Sr2Ca2Cu3O7 Prepared Using the Citrate sol – gel Method.” Journal of Supercondivity and Novel Magnetism, 29 ( 2016) 1491.
[20] M. K. Ben Salem, Y. Slimani, E. Hannachi, F. Ben Azzouz M. Ben Salem, “Bi-based superconductors prepared with addition of CoFe2O4 for the design of a magnetic probe.” Cryogenics, 89 ( 2018) 53.
[21] D. H. Tran, A. T. Pham, T. M. Le, D. T. K. Anh, Y. T. Phan, N. K. Man, D. Pham, W. N. Kang, “Enhanced flux pinning properties in Bi1.6Pb0.4Sr2−xKxCa2Cu3O10+δ compounds.” Journal of Materials Science: Materials in Electronics, 30 (2019) 8233.
[22] B. Özçelik, H. Gundogmus¸D. Yazici, “Effect of (Ta/Nb) co-doping on the magnetoresistivity and flux pinning energy of the BPSCCO superconductors.” Journal of Materials Science: Materials in Electronics, 25 (2014) 2456.
[23] G. Kirat, O. Kizilaslan, M. A. Aksan, “Effect of the Er-substitution on critical current density in glass-ceramic Bi2Sr2Ca2Cu3-xErxO10+δ superconducting system.” Ceramics International, 42 (2016) 15072.
[24] S. M. Khalil, “Role of rare-earth Ba2+ doping in governing the superconducting and mechanical characteristics of Bi-Sr-Ca-Cu-O.” Smart Materials and Structure, 14 (2005) 804.
[25] B. Özkurt, “Improvement of the critical current density in Bi-2223 ceramics by sodium-silver co-doping.” Journal of Materials Science: Materials in Electronics, 25 (2014) 3295.
[26] R. Wesche, High-Temperature Superconductors: Materials, Properties, and Applications, Springer US, Boston, MA, 1998, pp. 52-70.
[27] K. Neeraj, Handbook of High-Temperature Superconductor, CRC Press, New Delhi, 2003, pp. 112-114.
[28] Z. Y. Jia, H. Tang, Z. Q. Yang, Y. T. Xing, Y. Z. Wang, G. W. Qiao, “Effects of nano-ZrO2 particles on the superconductivity of Pb-doped BSCCO.” Physica C, 337 (2000) 130.
[29] M. Zouaoui, A. Ghattas, M. Annabi, F. Ben Azzouz, M. Ben Salem, “Effect of nano-size ZrO2 addition on the flux pinning properties of (Bi, Pb)-2223 superconductor.” Superconductor Science and Technology, 21 (2008) 125005.
[30] H. Azhan, F. Fariesha, S. Khalida, “Effect of Heat Treatments and Zr Doped on Superconducting Properties of Bi1.6Pb0.4Sr2Ca2Cu3Oδ Ceramics.” Journal of Superconductivity and Novel Magnetism, 24 (2011) 265.
[31] A. Heidari, S. Vedad, N. Heidari, M. Ghorbani, “Flux Dynamics in Y358 Superconductors.” Materials, 5 (2012) 882.
[32] S. Vinu, P. M. Sarun, R. Shabna, P. M. Aswathy, J. B. Anooja, U. Syamaprasad, “Suppression of flux-creep in (Bi, Pb)-2212 superconductor by holmium doping.” Physica B, 405 (2010) 4355.
[33] M. Mazaheri, S. Jamasb, “Electrical transport in the superconducting and normal states in Y2Ba5Cu7Ox high-temperature superconductor.” Solid State Communications, 234 (2016) 21.
[34] A. Aliabadi, Y. Akhavan-Farshchi, M. Akhavan, Flux Dynamics in Y358 and Gd358 Superconductors, Journal of Superconductivity and Novel Magnetism, 27 (2014) 741.
[35] H. Gündoğmuş, B. Özçelik, A. Sotelo, M. A. Madre, “Effect of Yb-substitution on thermally activated flux creep in the Bi2Sr2Ca1Cu2−xYbxOy superconductors.” Journal of Materials Science: Materials in Electronics, 24 (2013) 2568.
[36] D. Ahmad, W. J. Choi, Y. I. Seo, SehunSeo, Sanghan Lee, Yong Seung Kwon, “Thermally activated flux flow in superconducting epitaxial FeSe0.6Te0.4 thin film.” Results in Physics, 7 (2017) 16.
[37] M. Tinkham, “Resistive transition of high temperature superconductors.” Physical Review Letters, 61 (1988) 1658.
[38] M. R. Mohammadizadeh, M. Akvahan, “Magnetoresistance in Gd(Ba2−xPrx)Cu3O7+δ system.” Physica C, 390 (2003) 134.
[39] Y. Zalaoglu, G. Yildirim, C. Terzioglu, “Magnetoresistivity study on Cr added Bi-2212 superconductor ceramics with experimental and theoretical approaches.” Journal of Materials Science: Materials in Electronics, 24 (2013) 239.
[40] M. B. Turkoz, S. Nezir, A. Varilci, G. Yildirim, M. Akdogan, C. Terzioglu, “Experimental and theoretical approaches on magnetoresistivity of Lu-Doped Y-123 superconducting ceramics.” Journal of Materials Science: Materials in Electronics, 24 (2013) 1536.
[41] F. Shahbaz Tehrani, V. Daadmehr, “Superconductivity Versus Structural Parameters in Calcium-Doped Nd1-xCaxFeAsO0.8F0.2 Superconductors.” Journal of Superconductivity and Novel Magnetism, 33 (2020) 337.
[42] O. Özturk, D. Yegen, M. Yilmazlar, A. Varilci, C. Terzioglu, “The effect of cooling rates on properties of Bi1.7Pb0.35Sr1.9Ca2.1Cu3Oy superconductors produced by solid-state reaction method.” Physica C Superconductivity and its Applications, 451 (2007) 113.
[43] N. Darsono, D. Y. K. Raju, Effects of the Sintering Conditions on the Structural Phase Evolution and Tc of Bi1.6Pb0.4Sr2Ca2Cu3O7 Prepared Using the Citrate sol–gel Method, Journal of Supercondivity and Novel Magnetism, 26 (2016) 1491.
[44] N. Zarabini, V. Daadmehr, F. Shahbaz Tehrani, M. Abbasi, “Influence of Ag/Cu Substitution on Structural Effect of New High Temperature Superconductor Y3Ba5Cu8O18.” Procedia Materials Science, 11 (2015) 242.
[45] G. K. Williamson, W. H. Hall, Acta Metallurjica, 1 (1953) 22.
[46] S. Karimoto, H. Yamamoto, H, Sato, A. Tsukada, M. Naito, “TC versus lattice constants in MBEgrown M2CuO4 (M=La, Sr, Ba).” Journal of Low Temperature Physics, 131 (2003) 619.
[47] W. J. Choi, D. Ahmad, Y. I. Seo, R. K. Ko, Yong Seung Kwon, “Effect of the proton irradiation on the thermally activated flux flow in superconducting SmBCO coated conductors.” Scientific Reports, 10 (2020) 2017.
[48] R. Gross, P. Chaudhari, D. Dimos, A. Gupta, G. Koreu, “Thermally activated phase slippage in high-TC grain-boundary Josephson junctions.”, Physical Review Letters, 64 (1990) 228.
[49] T. T. M. Palstra, B. Batlogg, R. B. van Dover, L. F. Schneemeyer, J. V. Waszczak, “Dissipative flux motion in high-temperature superconductors.” Physical Review B, 41 (1990) 6621.
[50] B. Özçelik, C. Kaya, H. Gundogmus, A. Sotelo, M. A. Madre, “Effect of Ce Substitution on the Magnetoresistivity and Flux Pinning Energy of the Bi2Sr2Ca1−xCexCu2O8+δ Superconductors.” Journal of Low Temperature Physics, 174 (2014) 136.
[51] B. Özçelik, M. Gursul, A. Sotelo, M. A. Madre, Improvement of the Intergranular Pinning Energy in the Na-doped Bi-2212 Superconductors, Journal of Materials Science: Materials in Electronics, 26 (2015) 2830.
[52] T. T. M. Palstra, B. Batlogg, L. F. Schneemeyer, J. V. Waszczak, “Role of anisotropy in the dissipative behavior of high-temperature superconductors.” Physical Review B, 43 (1991) 3756.
[53] Y. Sun, S. Pyon, T. Tamegai, R. Kobayashi, T. Watashige, Sh. Kasahara, Y. Matsuda, T. Shibauchi, “Critical current density, vortex dynamics, and phase diagram of single-crystal FeSe.” Physical Review B, 92 (2015) 144509.
[54] S. Mirshamsi, S. Fallahi, M. Akhavan, Superconducting properties of Y1-xTbxBa2Cu3O7-δ and Y1-xTbxSr2Cu2.7Mo0.3O7-δ, Modern Physics Letters B, 24 (2010) 419.
[55] B. Özçelik, B., M. Gürsul, M., F. K. Nane, M. A. Madre, A. Sotelo, “Effect of Na-substitution on magnetoresistance and flux pinning energy of Bi-2212 ceramics prepared via hot-forging process.” Journal of Materials Science: Materials in Electronics, 29 (2018) 19147.
[56] B. Özkurt, B. Özçelik, “Effect of Nd-Substitution on Thermally Activated Flux Creep in the Bi1.7Pb0.3−xNdxSr2Ca3Cu4O12+y Superconductors.” Journal of Low Temperature Physics, 156 (2009) 22.
[57] B. Özçelik, E. Yalaz, M. E. Yakinci, A. Sotelo, M. A. Madre, “The Effect of K Substitution on Magnetoresistivity and Activation Energy of Bi- 2212 System.” Journal of Superconductivity and Novel Magnetism, 28 (2015) 553.
[58] V. Daadmehr, M. Akhavan, “Proton Irradiation Effects on Granular High‐TC Superconductors: Gd1–xPrxBa2Cu3O7–δ.” Physica Status Solidi (a).193 (2002) 153.