Effect of temperature changes on thermoelectric properties of the two sided-closed single-walled Boron Nitride nanotubes (6, 3)

Document Type : Original Article

Authors

1 Department of Physics, Takestan Branch, Islamic Azad University, Takestan, Iran

2 Department of Physics, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran

Abstract

In this study, thermoelectric properties of the two sided-closed single-walled boron nitride nanotubes (TSC-SWBNNTs) are investigated. For this purpose, a nanotube with the chirality of (6, 3) is selected with no impurities. The energy is considered in the range of -5.5 to 5.5 electron volts and the investigations are performed at the temperatures 300, 500, 700 and 900K. The results show that increasing temperature results in significant reduction in the length of the bandgap. Besides, the peaks of the conduction diagram become smaller and their number decreases, indicating the return of more electrons and holes around the LUMO and HOMO bands, respectively, which leads to reduction of the bandgap and increase in the conduction. Moreover, the seebeck coefficient (thermal power) has increased to about 370 μV/K by increasing temperature to 900K. As the temperature increases, the coefficient of merit (ZT) increases to about 0.95, and it is expected to experience more increase with further increase in temperature. Thermal conductivity has also increased slightly with increasing temperature. However, the values of thermal conductivity are at the nanoscale. Therefore, in general, it can be concluded that the (TSC-SWBNNT) (6, 3) can be selected as a suitable thermoelectric material.

Keywords

Article Title [Persian]

اثر تغییرات دما بر روی ویژگیهای ترموالکتریکی نانولوله تک لایه ی دو سر بسته ی نیترید بور (6،3)

Authors [Persian]

  • علی محمد یدالهی 1
  • پیمان عظیمی انارکی 1
  • مجتبی یعقوبی 2
  • محمد رضا نیازیان 2

1 گروه فیزیک، واحد تاکستان، دانشگاه آزاد اسلامی، تاکستان، ایران

2 گروه فیزیک، واحد آیت الله آملی، دانشگاه آزاد اسلامی، آمل، ایران

Abstract [Persian]

در این تحقیق خصوصیات ترموالکتریک نانو لوله ی نیترید بور دو سر بسته تک لایه ی (TSC-SWBNNT(6,3) ) در حالت بدون ناخالصی در بازه ی انرژی 5.5- تا 5.5 الکترون ولت و دماهای 200، 300، 500، 700 و 900 کلوین مورد بررسی قرار گرفت. نتایج نشان می دهد با افزایش دما طول باند گپ تحت تاثیر قرار گرفته و کاهش محسوسی می یابد. پیکهای نمودار رسانش با افزایش دما کوچکتر و کمتر شده است که نشان دهنده ی مراجعت تعداد بیشتر الکترونها و حفره ها به ترتیب اطراف باند لومو (LUMO) و هومو (HOMO) و باعث کاهش باند گپ و افزایش رسانش شده است. ضمنا ضریب سیبک ( توان حرارتی) با افزایش دما تا 900 کلوین، افزایش تا حدود 370 میکرو ولت بر کلوین را تجربه کرده است. با افزایش دما، ضریب شایستگی (ZT) تا حدود عدد 0.95 افزایش یافته که انتظار می رود با افزایش بیشتر دما، این ضریب مقادیر بیشتری را تجربه کند. رسانندگی گرمایی نیز با افزایش دما مقداری افزایش یافته ولی در حد نانو محدود مانده است که نشان از کوچک بودن مقدار آن می باشد. بنابراین در کل می توان نتیجه گرفت این نانولوله می تواند به عنوان ماده ترموالکتریک مناسبی انتخاب گردد.

Keywords [Persian]

  • نانو لوله
  • ضریب سیبک (توان حرارتی)
  • ضریب شایستگی
  • رسانش گرمایی
  • رسانش الکتریکی
[1] T.M. Tritt. “Thermoelectric phenomena, materials, and applications”. Annual Review of Materials Research, 41 (2011) 433-448.
[2] S. LeBlanc. “Thermoelectric generators: Linking material properties and systems engineering for waste heat recovery applications”. Sustainable Materials and Technologies, 1 (2014) 26-35.
[3] G.J. Snyder and E.S. Toberer. “Complex thermoelectric materials”. Nature materials, 7(2) (2008) 105-114.
[4] A. Minnich et al. “Bulk nanostructured thermoelectric materials: current research and future prospects”. Energy & Environmental Science, 2(5) (2009) 466-479.
[5] M. Zebarjadi et al. “Perspectives on thermoelectrics: from fundamentals to device applications”. Energy & Environmental Science, 5(1) (2012) 5147-5162.
[6] M.S. Dresselhaus et al. “New Directions for Low‐Dimensional Thermoelectric Materials”. Advanced Materials, 19(8) (2007) 1043-1053.
[7] Y. Lan et al. “Enhancement of Thermoelectric Figure‐of‐Merit by a Bulk Nanostructuring Approach”. Advanced Functional Materials, 20(3) (2010) 357-376.
[8] M.S. Dresselhaus et al. “New Directions for Low‐Dimensional Thermoelectric Materials”. Advanced Materials, 19(8) (2007) 1043-1053.
[9] A.M. Marconnet et al. “Thermal conduction phenomena in carbon nanotubes and related nanostructured materials”. Reviews of Modern Physics, 85(3) (2013) 1295-1326.
[10] L.X. Benedict et al. “Heat capacity of carbon nanotubes”. Solid State Communications, 100 (1996) 177-180.
[11] Z. Wang et al. “Length-dependent thermal conductivity of single-wall carbon nanotubes: prediction and measurements”. Nanotechnology, 18 (2007) 475714.
[12] Blase X. Blase et al. “Stability and band gap constancy of boron nitride nanotubes” EPL (Europhysics Letters), 28(5) (1994) 335.
[13] A. Rubio et al. “Theory of graphitic boron nitride nanotubes”. Physical Review B, 49(7) (1994) 5081.
[14] C.H. Lee et al. “Patterned growth of boron nitride nanotubes by catalytic chemical vapor deposition”. Chemistry of Materials, 22(5) (2010) 1782-1787.
[15] M.L. Cohen and A. Zettl. “The physics of boron nitride nanotubes”. Physics Today, 63(11) (2010) 34-38.
[16] A.L. Tiano et al. “Boron nitride nanotube: synthesis and applications in Nanosensors, Biosensors, and Info-Tech Sensors and Systems”. International Society for Optics and Photonics, 9060 (2014) 906006-1.
[17] C. Lee et al. “Boron nitride nanotubes: recent advances in their synthesis, functionalization and applications”. Molecules, 21(7) (2016) 922.
[18] N.G. Chopra et al. “Boron nitride nanotubes”. Science, 269(5226) (1995) 966-967.
[19] Mohammad Yaghobi et al. “Magnetic and structural properties of BNC nanotubes”. Molecular Physics, 2018, DOI: 10.1080/00268976.2018.1508783.
[20] J.X. Zhao and B.Q. Dai. "DFT studies of electro-conductivity of carbon-doped boron nitride nanotube”. Materials Chemistry and Physics, 88 (2004) 244-249.
[21] DA Papaconstantopoulos and MJ. Mehl. “The Slater–Koster tight-binding method: a computationally efficient and accurate approach”. Journal of Physics: Condensed Matter, 15 (2003) 413–440.
[22] Julian Schneider et al. “ATK-ForceField: a new generation molecular dynamics software package”. Modeling and Simulation in Materials Science and Engineering, 25 (2017) 085007 (28pp).
[23] P. Zhao et al. “Rectifying behavior in nitrogen-doped zigzag single-walled carbon nanotube junctions”. Solid State Communications, 152 (2012) 2040–2044.
[24] Mei Wang et al. “Spin transport properties in Fe-doped graphene/hexagonal boron-nitride nanoribbons heterostructures”. Physics Letters A, 383 (2019) 2217-2222.
[25] S. Datta. Electronic Transport in Mesoscopic Systems. Cambridge University Press. New York 1995.
[26] P. Chaudhuri et al. “Density functional study of glycine adsorption on single-walled BN nanotubes”. Applied Surface Science, 536 (2020) 147686.
[27] J.X. Zhao et al. “A Theoretical Study on the Conductivity of Carbon Doped BNNT”. Chemical Society, 52, (2005) 395.
[28] Chenkang Rui et al. “Transport properties of B/P doped grapheme nanoribbon field-effect transistor”. Materials Science in Semiconductor Processing, 130 (2021) 105826.
[29] N. Hilaal Alama and Seeram Ramakrishnab. “A review on the enhancement of figure of merit from bulk to nano-thermoelectric materials”. Nano Energy, 2(2) (2013) 190-212.
[30] T.M. Tritt. Encyclopedia of Materials: Science and Technology, Thermoelectric Materials: Principles, Structure, Properties, and Applications. Elsevier Science Ltd (2002).
[31] A. M. Yadollahi1, P. Azimi Anaraki1, M. Yaghobi, Thermoelectric properties of two sided-closed single-walled boron nitride nanotubes (6, 3). Indian J. Phys., (2022), https:// doi.org/10. 1007/s12648-021-02255-2.