Study of the physical properties of CdTe (200): synthesized nanoparticles and grown thin film

Document Type : Original Article

Authors

Department of Physics, Faculty of Science, Yadegar-e-Imam Khomeini (RAH) Shahr-e-Rey Branch, Islamic Azad University, Tehran, Iran

Abstract

In this work, cadmium telluride nanoparticles were synthesized by sonochemical method and then thin films with the thicknesses about of 100 nm were deposited on glass substrates using thermal evaporation technique at a substrate temperature of 200 °C and vacuum pressure of 2×10-5 mbar. Sonochemical method is one of the best methods for synthesizing nanomaterials with very small particle sizes. After synthesis and deposition, the prepared films were subjected to x-ray diffraction, ultraviolet-visible spectroscopy and scanning electron microscopy to study the structure, optical properties and morphology of the films. XRD patterns indicated that the grown films were polycrystalline with a cubic structure on the preferred orientation (200).The size of the synthesized nanoparticles and crystallite size of the thin film grown on glass in the preferred orientation (200) were 16 nm &10.65 nm, respectively. Light absorbance spectra of nanoparticle and thin film obtained by UV-Vis spectroscopy at the wavelength range 600-1600 nm showed the increase of light absorption after deposition. The optical energy band gap was increased from 1.48 for nanoparticles to 1.51 for the deposited films. The SEM taken on the scale of 500 nm from nanoparticles and thin films showed the homogeneity and uniformity of both of them

Keywords

Main Subjects

Article Title [Persian]

مطالعه خواص فیزیکی کادمیم تلوراید (200): سنتز نانوذرات و رشد لایه نازک

Authors [Persian]

  • مرجان کمالیان
  • لیدا بابازاده حبشی
  • مریم قلی زاده آرشی
  • ابراهیم حسنی

گروه فیزیک، دانشکده علوم، واحد یادگار امام خمینی شهر ری، دانشگاه آزاد اسلامی، تهران، ایران.

Abstract [Persian]

در این کار، نانوذرات کادمیوم تلوراید به روش سونوشیمیایی سنتز شده و سپس لایه های نازک با ضخامت هایی در حدود   100 نانومتر به روش تبخیر حرارتی در دمای بستر  200 درجه سانتیگراد و فشار خلاء5- 10×2 میلی بار بر روی زیرلایه های شیشه لایه نشانی شدند. سونوشیمیایی یکی از بهترین روشها برای سنتز نانو مواد با اندازه ذرات خیلی کوچک است. پس از سنتز و لایه نشانی، لایه-های تهیه شده درون دستگاه های پراش پرتو ایکس (XRD)، طیف سنجی فرابنفش- مرئی (UV-Vis) و میکروسکوپ الکترونی روبشی (SEM) قرار گرفتند تا ساختار، خواص اپتیکی و مورفولوژی سطح آنها مطالعه و آنالیز شود. مطالعه الگوهای XRD نشان می دهد لایه های رشدیافته پلی کریستال با ساختار مکعبی دارای جهت گیری ترجیحی (200) می باشند. اندازه نانو ذرات سنتز شده و اندازه بلورینگی لایه نازک رشد یافته بر روی شیشه در راستای ترجیحی (200) به ترتیب 16 و 10/65 نانومتر بدست آمد. طیف های جذب نور از نانوذره و لایه نازک بدست آمده از طیف سنجی UV-Vis در محدوده طول موج   600-1600 نانومتر نشان دهنده افزایش مقدار جذب نور پس از لایه‌نشانی است. گاف انرژی اپتیکی از 1/48 الکترون ولت مربوط به نانو ذرات به 1/51 الکترون ولت مربوط به لایه رشدیافته افزایش می یابد. تصاویر مورفولوژی گرفته شده در مقیاس 500 نانومتر از نانو ذرات و سطح لایه نازک، همگنی و یکنواختی هر دو را نشان می دهد.

Keywords [Persian]

  • کادمیوم تلوراید
  • سونوشیمیایی
  • لایه نشانی تبخیر حرارتی
  • اندازه بلورینگی
  • ضریب خاموشی
[1] K. Ogawa et al, “Development of an ultra-high resolution SPECT system with CdTe semiconductor detector”, Annals of Nuclear Medicine 23 (2009) 763.
[2] R. M. Amin et al, “Fluorescence-based CdTe nanosensor for sensitive detection of cytochrome C”, Biosensors and Bioelectronics 98 (2017) 415.
[3] C. Liu et al, “Visible-light driven photocatalyst of CdTe/CdS homologous heterojunction on N-rGO photocatalyst for efficient degradation of 2, 4-dichlorophenol”, Journal of Taiwan Institute of Chemical Engineers 93 (2018) 603.
[4] G. Yang et al, “Photosensitive cadmium telluride thin-film field-effect transistors”, Optics Express 24 (2016) 3607.
[5] W. Chen et al, “Voltage tunable electroluminescence of CdTe nanoparticle light-emitting diodes”, Journal of Nanoscience and Nanotechnology 2 (2002) 47.
[6] M. Hädrich et al, “Formation of CdSxTe1-x at the p-n junction of CdS-CdTe solar cells”, Physica Status Solidi (C) Current Topics in Solid State Physics 6 (2009) 1257.
[7] E. Hasani and D. Raoufi, “Influence of temperature and pressure on CdTe:Ag thin film”, Surface and Engineering, 34 (2018) 914.
[8] M. Sh. Hossain et al, “ Impact of CdTe thin film thickness in ZnxCd1-xS/CdTe solar cell by RF sputtering”, Solar Energy, 180 (2019) 559.
[9] K. S. Rahman et al, “Influence of deposition time in CdTe thin film properties grown by close-spaced sublimation (CSS) for photovoltaic application”, Results in Physics 14 (2019) 102371.
[10] J. P. Enriquez and X. Mathew, “XRD study of the grain growth in CdTe films annealed at different temperatures”, Solar Energy Materials and Solar Cells 81 (2004) 363.
[11] M. F. Al-Kuhaili et al, “Influence of vacuum annealing on the photoresponse of thermally evaporated cadmium telluride thin films”, Thin Solid Films 686 (2019) 137412.
[12] L. Feng et al, “The electrical, optical properties of CdTe polycrystalline thin films deposited under Ar-O2 mixture atmosphere by close-spaced sublimation”, Thin Solid Films, 491 (2005) 104.
[13] M. A. Green et al, “Solar cell efficiency tables (Version 52)”, Progress in photovoltaics: Research and applications 26 (2018) 427.   
[14] T. Takahashi and S. Watanabe, “Recent progress in CdTe and CdZnTe detectors”, IEEE Transaction on Nuclear Science 48 (2001) 950.
[15] E. Hasani et al, “Synthesis and deposition of (200)-oriented CdTe thin films on transparent substrates”, Materials Research Express 6 (2019) 046422.
[16] I. Ban et al, “Preparation of cadmium telluride nanoparticles from aqueous solutions by sonochemical method”, Materials Letters 67 (2012) 56.
[17] J. Ling et al, “Electrodeposition of CdTe thin films for solar energy water splitting”, Materials 13 (2020) 1536.
[18] I. R. Agool et al, “Synthesis and characterization of CdTe NPs induced by laser ablation in liquid”, Journal of Advanced Physics 6 (2017) 241.
[19] K. S. Suslick et al, “Sonochemical synthesis of amorphous iron”, Nature 353 (1991) 414.
[20] D. Chen et al, “Handbook on Applications of ultrasound: sonochemistry for sustainability”, CRC Press, 2011.
[21] A. Umer et al, “Selection of a suitable method for the synthesis of copper nanoparticles”, Nano 07 (2012) 1230005.
[22] P. Bartolo-Pérez et al, “X-Rey photoelectron spectroscopy study of CdTe oxide films grown by rf sputtering with an Ar-NH3 plasma”, Surface and Coatings Thechnology 155 (2002) 16.
[23] J. Ramiro et al, “Pulsed laser deposition and electrodeposition techniques in growing CdTe and CdxHg1-xTe thin films”, Thin Solid Films 361-362 (2000) 65.
[24] V. V. Brus et al, “Graphitic Carbon/n-CdTe schottky-type heterojunction solar cells prepared by electron-beam evaporation”, Solar Energy 112 (2015) 78-84.
[25] D. Verma et al, “Surfactant-free CdTe nanoparticles mixed MEH-PPV hybrid solar cell deposited by spin coating technique”, Solar Energy Materials and Solar Cells 93 (2009) 1482.   
[26] X. Wen et al, “Epitaxial CdTe thin films on mica by vapor transport deposition for flexible solar cells”, ACS Applied Energy Materials 3 (2020) 4589.
[27] Z. Mahmoud Nassar et al, “Structural and optical properties of CdTe thin film: A detailed investigation using optical absorption, XRD, and Raman spectroscopies”, Physica Status Solidi (b) Basic Solid State Physics 253 (2016) 1104.
[28] E. Hasani et al, “Effect of high-pressure annealing on the physical properties of the CdTe thin films”, The European physical journal plus 136 (2021) 1-12.
[29] S. Chander and M. S. Dhaka, “CdCl2 treatment concentration evolution of physical properties correlation with surface morphology of CdTe thin films for solar cells”, Materials Research Bulletin 97 (2018) 128-135.
[30] A. Escobedo et al, “Characterization of smooth CdTe (111) films by thee conventional close-spaced sublimation technique”, Journal of Electronic Materials 39 (2010) 400-409.
[31] H. I. Salim et al, “Electrodeposition of CdTe thin films using nitrate precursor for applications in solar cells”, Journal of Materials science: Materials in Electronics 26 (2015) 3119-3128.
[32]Y. Gu et al, “Influence of surface structures on quality of CdTe(100) thin films grown on GaAs(100) substrates”, Chinese physics letters 35 (2018) 086801.
[33]Sh. X. Zhang et al, “Characterization of the microstructures and optical properties of CdTe(001) and (111) thin films grown on GaAs(001) substrates by molecular beam epitaxy”, Journal of Crystal growth  546 (2020) 125756.
[34]J. P. Faurie et al, “CdTe-GaAs(100) interface: MBE growth, rheed and XPS characterization”, Surface Scince 168 (1986) 473-482.
[35]L. A. Kolodziejski and R. L. Gunshor “Epitaxial growth of CdTe on GaAs by molecular beam epitaxy”, Journal of Vacuum science & technology A 4 (1986) 2150.
[36] E. Campos-González et al, “Structural and optical properties of CdTe-nanocrystals thin films grown by chemical synthesis”, Materials Science in Semiconductor Processing 35 (2015) 144.
[37] F. Hosseinpanahi et al, “Fractal feature of CdTe thin films grown by RF magnetron sputtering”, Applied Surface Science 357 (2015) 1843.
[38] A. L. Patterson, “The Scherrer formula for X-ray particle size determination”, Physical Review 56 (1939) 978.
[39] G. K. Williamson and W. H. Hall, “X-ray line broadening from field aluminum and wolfram”, Acta Metallurgica 1 (1953) 22.
[40] G. K. Williamson and R. E. Smallman, “III. Dislocation densities in some annealed and cold-worked metals from measurements on the X-ray debye-Scherrer spectrum”, The Philosophical Magazine: A Journal of Theoretical Experimental and Applied Physics 1 (1956) 34.
[41] G. B. Harris, “X. Quantitative measurement of preferred orientation in rolled uranium bars”, The London, Edinburgh and Dublin Philosophical Magazine and Journal of Science 43 (1952) 113.
[42] H. R. Moutinho et al, “Investigation pf polycrystalline CdTe thin films deposited by physical vapor deposition, close-spaced sublimation and sputtering”, Journal of Vacuum Science & Technology A 13 (1995) 2877.
[43] A. L. Rogach, “Nanocrystalline CdTe and CdTe(S) particles: wet chemical preparation, size-dependent optical properties and perspectives of optoelectronic applications”, Material Science and Engineering B 69-70 (2000) 435.
[44] J. Polit et al, “High resolution spectra of defects in CdTe obtained in Far-infrared region using synchrotron radiation”, Infrared physics & Technology 49 (2006) 23-28.
[45] J. Tauc, “Optical properties and electronic structure of amorphous Ge and Si”, Materials Research Bulletin 3 (1968) 37.
[46] H. Abitan et al, “Correction to the Beer-Lambert-Bouguer law for optical absorption”, Applied Optics 47 (2008) 5354.
[47] E. Hasani et al, “Study of structural, electrical and optical properties of (200)-oriented CdTe thin films depending on the post-deposition low temperature”, Journal of Electronic Materials 49 (2020) 4134.
[48] J. Novák et al, “Influence of tensile and compressive strain on the band gap energy of ordered InGaP”, Applied Physics Letters 79 (2001) 2758.
[49] S. Sanjeev and D. Kekuda, “Effect of annealing temperature on the structural and optical properties of zinc oxide (ZnO) thin films prepared by spin coating process”, IOP Conference Series.: Materials Science and Engineering 73 (2015) 012149.
[50] W. W. Yu et al, “Experimental determination of the extinction coefficient of CdTe, CdS nanocrystals”, Chemistry of Materials 15 (2003) 2854.
[51] K. Okitsu and S. Semboshi, “Synthesis of Au nanorods via autocatalytic growth of Au seeds formed by sonochemical reduction of Au(I): Relation between formation rate and characteristics of Au nanorods”, Ultrasonics Sonochemistry 69 (2020) 105229.
[52] A. Banerjee et al, “Optical properties of refractory metal based thin films”, Optcal Materials Express 8 (2018) 2072.
[53] B. Kumar et al, “Sonochemical synthesis of silver nanoparticles using starch: A comparison”, Bioinorganic Chemistry and applications 2014 (2014) 784268.
[54] K. Punitha et al, “Physical properties of electron beam evaporated CdTe and CdTe:Cu thin films”, Journal of Applied Physics  116 (2014) 213502.