Temperature effect on femto-dimensional bound states

Document Type : Original Article

Authors

1 Imam Khomeini International University, Buein Zahra Higher Education Center of Engineering and Technology, Department of Physics and Engineering Sciences, Iran

2 Department of Physics, Federal University of Petroleum Resources, Effurun, Delta State, Nigeria.

Abstract

The bound state of exotic gluons with a thermal background in the framework of the projective unitary representation in the physics model at high energy interactions has been investigated. The ground and excited states of gluonic systems to describe the temperature effect of the mass spectrum have been defined. The problem of calculating the mass spectrum of coupled states based on the QFT in its broadest sense is a technique, to detect and obtain reasonable objectives and goals. The aim of this paper is to present the possible use of symplectic space in Femto-dimensional bound states at a finite temperature within strong interaction. The results can be used for describing nonzero and zero temperature mass spectra of mesons and multigluon-bound states. The problem of determining coupled state masses based on the polarization function is examined in detail. The Hamiltonian of the interaction and the structure of the bound state with the Schrödinger equation within the color-confining potential and Debye mass at finite temperature is presented and then the mass spectrum of a glueball at high energy interaction is determined. The mass spectrum of a two-gluon coupled state is calculated. The results are presented in the figures and table.

Keywords

Main Subjects

Article Title [Persian]

اثر دما در سیستم های مقید با ابعاد فمتو

Authors [Persian]

  • آرزو جهانشیر 1
  • اکووگبه اوموگبه 2

1 گروه فیزیک و علوم مهندسی، مرکز آموزش عالی فنی و مهندسی بوئین زهرا، ایران

2 گروه فیزیک، دانشگاه فدرال منابع نفتی، افورون، ایالت دلتا، نیجریه

Abstract [Persian]

در حال حاضر بدست ‌آوردن پارامترهای ساختارهای فمتو متری در دماهای معین بخشی مهمی از پژوهش فیزیک نظری و فیزیک ساختارهای هادرونی و بوزونی مقید است که در محیط پلاسمای کوارک-گلئونی اهمیت دارد. در این مقاله با استناد براثرات نسبیتیِ برهم کنش در انرژی های بالا و دمای معین طیف جرم ساختار گلئونی محاسبه شده است. اصول نظریة میدانهای کوانتومی و روش و بهنجارش عملگرهای زاد و فنا در این مبحث در نظر گرفته شده و تحلیل روابط نظری بر این اساس بدست می آید. مهمترین دستاورد نظری ارایه شده در این مقاله تصحیحات نسبیتی جرم و دما بر روی ساختارهای مقید بوزونی است.

Keywords [Persian]

  • ساختارهای مقید
  • گلوبال
  • پلاسمای کوارک-گلئونی
  • جرم نسبیتی
  • برهم کنش قوی
[1] Rushka and J. Freericks, “A completely algebraic solution of the simple harmonic oscillator”, Am. J. Phys. 88(11) (2019) 976–985.
[2] Dienykhan at al, “Oscillator Representation in Quantum Physics (Lecture Notes in Physics Monographs)”, 1st ed. Springer International Publishing, (1995).
[3] Fujiwara, “Rigorous Time Slicing Approach to Feynman Path Integrals”, 1st ed. Springer International Publishing; (2017).
[4] Mathieu et al, “The Physics of Glueballs” Int. Jou. Mod. Phys. E 181 (2009) 49.
[5] V. Souza et al, “Pseudoscalar glueball mass: a window on three-gluon interactions” Eur. Phys. J. A. 56(1) (2020) 1-7.
[6]  Sexty, “Calculating the equation of state of dense quark-gluon plasma using the complex Langevin equation”, Phys Rev D. 100(7) (2019) 074503-074511.
[7] Abu-Shad and A. Ikot, “Analytic solution of multi-dimensional Schrödinger equation in hot and dense QCD media using the SUSYQM method”, Eur. Phys. J. Plus. 134(7) (2019) 321-331.
[8] Nakatsuji, “Solving the Schrödinger equation of atoms and molecules: Chemical-formula theory, free-complement chemical-formula theory, and intermediate variational theory” J. Chem. Phys. 149(11) (2018) 114105-14114.
[9] Maireche, “A theoretical investigation of nonrelativistic bound state solution at finite temperature using the sum of modified Cornell plus inverse quadratic potential” Sri. Lankan J. Phys. 21(1) (2020) 11-36.
[10] Gould, “Quantum Electrodynamics. Electromagnetic Processes”, 1st ed. Springer- Verleg; (2020); M., Fedoryuk, “Method of steepest descent”. 2nd ed. Librokom, (2010).
[11] Huber, “Spectrum of scalar and pseudoscalar glueballs from functional methods” Eur. Phys. J. C 80(11) (2020)1–12.
[12] Paulo et al, “Finite temperature gluon propagator in Landau gauge: non-zero Matsubara frequencies and spectral densities” EPJ Web Conf. 175 (2018) 07038.
[13] Abu-Shady et al, “Binding Energies and Dissociation Temperatures of Heavy Quarkonia at Finite Temperature and Chemical Potential in the n -Dimensional Space”, Advances in high energy physics. 7356843 (2018) 1-12.
[14] Jahanshir, “Di-Mesonic Molecules Mass Spectra”, Indian J. Sci. Technol. 10(22) (2017) 1–5.
[15] Roberts, “New Trends in Hadron Physics: A Few-Body Perspective”, Few-Body Syst. 62(3) (2021)1–2.
[16] S. Afonin and A. D. Katanaeva, “Glueballs and deconfinement temperature in AdS/QCD”, Phys. Rev. D 98 (2018) 114027.
[17] Dineykhan et al, “Determination of the glueball mass spectrum with allowance for spin-orbital interactions” Russian Physics Journal 47(12) (2004) 1250-60.
[18] Kaidalov and Yu. Simonov, “Glueball masses and Pomeron trajectory in nonperturbative QCD approach” Phys. Lett. B 477 (2000) 163.
[19] Nayek and R. Shibaji, “Finite temperature 0−+ glueball spectrum from non-susy D3 brane of Type IIB string theory”, arXiv:2105.01503 [hep-th], (2021).
[20] Morningstar and M. Peardon, “Glueball spectrum from an anisotropic lattice study”, Phys. Rev. D 60 (1999) 034509.
[21] Sexton et al, “Numerical Evidence for the Observation of a Scalar Glueball” Phys. Rev. Lett. 75 (1995) 4563.
[22] Ishii et al, “Scalar Glueball mass reduction at finite temperature in SU(3) anisotropic lattice QCD” Phys. Rev. D 66 (2002) 014507.
[23] V., Anisovich et al, “Partial wave analysis of pp→ π− π+, π0π0, ηη and ηη′” Nucl. Phys. A 662 (2000) 319.
[24] V. Anisovich et al, “Analysis of p̄p→π−π+, π0π0, ηη and ηη′ from threshold to 2.5 GeV/c” Phys. Lett. В 471 (1999) 271,
[25] Szczepaniak and E. S. Swanson, “The low lying glueball spectrum” Phys. Lett. B 577 (2003) 61-66.
[26] S. Hou and G. G. Wong, “The Glueball Spectrum from a Potential Model” Phys.Rev. D 67 (2003) 034003.
[27] Chen et al, “Glueball spectrum and matrix elements on anisotropic lattices” Phys. Rev. D 73 (2006) 014516.
[28] Godfrey “The Phenomenology of Glueball and Hybrid Mesons”, arXiv:hep-ph/0211464, (2002).
[29] M. Yao et al, “Review of particle physics” J. Phys. G 33 (2006) 1.