Electrical properties of magnetic tunnel junctions affected by two types of interfacial roughness

Document Type : Original Article


Department of Physics, West Tehran Branch, Islamic Azad University, Tehran, Iran


The theoretical study has been done for investigating the effect of two types of rough interfacials on the electrical properties of a the magnetic tunneling structures. Surface roughness is found to have a strong influence on the spin polarized transport throughmagnetic tunneling junctions . The scattering mechanism because of rough interfaces causes to reduction of maximum achievable value of transmission probability resonance. Also, the presence of roughness interfacial causes to change in the spin polarization and the tunneling magnetoresistance ratios. The asymmetry distribution of the density of states may be reduced and the spin polarization and the tunneling magnetoresistance show the irregular behavior.


Article Title [فارسی]

خواص الکتریکی اتصالات تونل زنی مغناطیسی متاثر از دو نوع فصل مشترک ناهموار

Author [فارسی]

  • ژاله ابراهیمی نژاد

گروه فیزیک، دانشگاه آزاد اسلامی، واحد تهران غرب، تهران، ایران

Abstract [فارسی]

یک مطالعه تئوری به منظور بررسی دو نوع فصل مشترک ناهموار بر خواص الکتریکی ساختارهای تونل زنی مغناطیسی انجام شده است. ناهمواری تاثیر شدیدی بر ترابرد اسپین قطبیده از میان اتصالات مغناطیسی تونل زنی دارد. مکانیزم پراکندگی ناشی از ناهمواری موجب کاهش بیشترین مقدار قابل دستیابی احتمال عبور تشدیدی می گردد.همچنین، حضور فصل مشترک ناهموار موجب تغییر در میزان قطبش اسپینی و مقاومت مغناطیسی تونل زنی می شود. توزیع نامتقارن چگالی جریان کاهش یافته و قطبش اسپینی و مقاومت مغناطیسی تونل زنی رفتار نامنظم نشان می دهند.

Keywords [فارسی]

  • فصل مشترک ناهموار
  • مقاومت مغناطیسی تونل زنی
  • خواص الکتریکی
  • قطبش اسپینی
[1] X. Xu, “Influence of roughness and disorder on tunneling magnetoresistance”, Phys. Rev. B, 73 (2006) 180402R .
[2] Li , and Ch.-Ray. Chang, “Influence of interfacial roughness on the tunnel magnetoresistance”, Physics Letters A, 287 (2001) 415.
[3] Kado, “Large room-temperature inverse magnetoresistance in tunnel junctions
with a Fe3O4 electrode”, Appl. Phys. Lett. 92, (2008)092502.
[4] H. Wu, et al, “Spin-dependent transport properties of Fe3O4/MoS2/Fe3O4 junctions”, Scientific Reports 5 (2015) 15984.
[5] Zh. Zhu,et al ,  “Magnetic and transport properties of amorphous, B2 and L21 Co2MnGa thin films”, AIP Advances, 10 (2020) 085020.
[6]  Koley, et al, “Spin Dependent Transport through Driven Magnetic System with Aubry-Andre-Harper Modulation”, Appl. Sci. 11 (2021) 2309.
[7] -D. Yuan, et al, “Giant momentum-dependent spin splitting in centrosymmetric low-Zantiferromagnets”, Phys. Rev. B, 102 (2020) 014422.
[8] Jiao, et al, “First-Principles Prediction of Spin-Polarized Multiple Dirac Rings in Manganese Fluoride”. Phys. Rev. Lett, 119 (2017) 016403.
[9] P. Johansson, “Theory for light emission from a scanning tunneling microscope”, Phys.    Rev. B 42 (1990) 9210(R)
[10] T. Dietz, R.B. Darling, “Coherent electron transport across semiconductor heterojunctions with rough interfaces”, Phys. Rev. B 53 (1996) 3925.
[11] Leo, A.H. MacDonald, “Disorder-assisted tunneling through a double-barrier structure”, Phys. Rev. Lett. 64 (1990) 817.
[12] W. Miller, “The critical role of the barrier thickness in spin filter tunneling”, Journal of Magnetism and Magnetic Materials 321 (2009) 2563.
[13] Long, et al, “J. Gate-controllable spin battery”, Appl. Phys. Lett., 83 (2003) 1397.
[14] Zhang, et al, “Spin Current through a Quantum Dot in the Presence of an Oscillating Magnetic Field”, Phys. Rev. Lett., 91 (2003) 196602.
[15] Földi, et al, “Quantum rings as electron spin beam splitters”, Phys. Rev. B 73 (2006) 155325.
[16] Hatano, et al, “Non-Abelian gauge field theory of the spin-orbit interaction and a perfect spin filter”, Phys. Rev. A, 75 (2007) 032107.
[17] Dey,et al, “Spin Hall effect in a Kagome lattice driven by Rashba spin-orbit interaction” J. Appl. Phys., 112 (2012) 024322.
[18] Földi, et al, “Networks of Quantum Nanorings: Programmable Spintronic Devices”, Nano Lett., 8 (2008) 2556.
[19] C. Liu, and D.D. Coon, “Interface-roughness and island effects on tunneling in quantum wells” J. Appl. Phys. 64 (1988) 6785.
[20] M. Wilczynski, J. Barnas, Journal of Magnetism and Magnetic Materials, “Tunnel magnetoresistance in ferromagnetic double-barrier planar junctions: Coherent tunneling regime”221 (2000) 373.
[21] Y. Tsymbal,O. NMryasov, and P. R LeClair, “Spin-dependent tunneling in magnetic tunnel junctionsJ. Phys.: Condens. Matter, 15 (2003) R109–R142.
[22] J. Fabian, S. Das Sarma, Spintronics Fundamentals and ApplicationsRev. Mod.  Phys. 76 (2004) 323.
[23] Saffarzadeh, Journal of Physics: Condensed Matter, “Tunnel magnetoresistance in double spin filter junctions” 15 (2003) 3041.
[24] Baum, et al,“Field emission of monoenergetic spin-polarized electrons” Appl. Phys. 14 (1977) 149.
[25] Ebrahiminejad, et al, “The study of transport properties in rough ferromagnetic
semiconductor rough junctions”, Physica E 48 (2013) 70.
[26] L. Barabasi and H. E. Stanley, Fractal Concepts in Surface Growth, Cambridge University Press, New York, (1995).
[27] D. Costa, et al, “Tunneling Phenomena as a Probe to Investigate Atomic Scale Fluctuations in Metal/Oxide/Metal Magnetic Tunnel Junctions”, Phys. Rev. Lett. 85 (2000) 876.
[28] Bagrets, A. Bagrets, A. Vedyayev, B. Dieny, “Influence of s−d interfacial scattering on the magnetoresistance of magnetic tunnel junctions”, Phys. Rev. B 65 (2002) 064430.