DFT study of Silicon channel effects embedded between armchair graphene nanoribbons with different widths on mechanical and electronic properties

Document Type : Original Article

Author

Microwave/mm-wave and Wireless Communication Research Lab, Electrical Engineering Department, Amirkabir University of Technology, Tehran, Iran

Abstract

Graphene Nano-Ribbons (GNR) are strong candidates for future materials in the electronics industry. In this paper, we extract the mechanical and electrical properties of AGNRs combination of different widths and deposition of silicon dimer to create Metal-insulator-semiconductor by the DFT method. Results demonstrate that by decreasing the mean width and strain of AGNR-AGNR composite and replacing the carbon dimer with silicon dimer, the bandgap of the system will reduce. The AGNR-Si-AGNR composite is a promising candidate for transistor application due to the small bandgap and high current flow allowance due to the high near the Fermi’s level electronic state involvement under the bias voltage.

Keywords

Article Title [فارسی]

مطالعه DFT اثرات سیلیکون قرار گرفته شده بین نانو روبان های گرافنی دسته صندلی با عرض های متفاوت بر روی خواص مکانیکی و الکترونیکی

Author [فارسی]

  • مهدی زارعپور

گروه مهندسی برق، دانشگاه صنعتی امیرکبیر، تهران، ایران

Abstract [فارسی]

نانو نوارهای گرافنی (GNR) یکی از کاندیداهای مهم مورد استفاده در صنعت الکترونیک هستند. در این مقاله ، خواص مکانیکی و الکتریکی ترکیب نانو نوارهای گرافنی دسته صندلی با عرض های مختلف و رسوب دیمر سیلیکون برای ایجاد فلز عایق-نیمه هادی با روش DFT مورد بررسی قرار داده ایم. نتایج نشان می دهد که با کاهش میانگین عرض و کرنش کامپوزیت AGNR-AGNR و جایگزینی دیمر سیلیکون با دیمر کربن ، شکاف باند (bandgap) سیستم کاهش می یابد. با کاهش شکاف باند کامپوزیت AGNR-Si-AGNR مورد بررسی قرار می گیرد که مشخص می شود این کامپوزیت کاندیدای امیدوار کننده ای برای استفاده به عنوان ترانزیستور است ، زیرا دارای شکاف باند کم است و همچنین به دلیل نزدیک بودن به سطح فرمی تحت ولتاژ بایاس، عبورجریان زیاد در این ساختار امکان پذیر است.

Keywords [فارسی]

  • نانو نوار گرافنی
  • شکاف باند کانال
  • DFT
[1]          S. Prabhakar, R. Melnik, "Band engineering and elastic properties of strained armchair graphene nanoribbons: semiconductor vs metallic characteristics." arXiv preprint arXiv:1901.00576, 2019.
[2]          F. Schwierz, "Graphene transistors." Nature Nanotechnology, 5 (2010) 487.
[3]          E. Kan, Z. Li, J. Yang, "Graphene nanoribbons: geometric, electronic, and magnetic Properties." Physics and Applications of Graphene-Theory, Sergey Mikhailov, IntechOpen (2011).
[4]          J. Wang, M. Liang, Y. Fang, T. Qiu, J. Zhang, L. Zhi, "Rod‐coating: towards large‐area fabrication of uniform reduced graphene oxide films for flexible touch screens." Advanced Materials, 24 (2012) 2874.
[5]          M. Aliofkhazraei, N. Ali, W. I. Milne, C. S. Ozkan, S. Mitura, J. L. Gervasoni, Graphene Science Handbook: Nanostructure and Atomic Arrangement: CRC Press (2016).
[6]          J. R. Reimers, "Computational methods for large systems: electronic structure approaches for biotechnology and nanotechnology." John Wiley & Sons (2011).
[7]          K. Wakabayashi, K.-i. Sasaki, T. Nakanishi, T. Enoki, "Electronic states of graphene nanoribbons and analytical solutions." Science and Technology of Advanced Materials, 11 (2010) 054504.
[8]          F. Hao, X. Chen, "First-principles study of lithium adsorption and diffusion on graphene: the effects of strain." Materials Research Express, 2 (2015) 105016.
[9]          D. R. Cooper, B. D’Anjou, N. Ghattamaneni, B. Harack, M. Hilke, A. Horth, et al.,  "Experimental review of graphene. International Scholarly Research Notices." 2012 (2012) 501686.
[10]        F. Schwierz, "Graphene transistors." Nature Nanotechnology, 5 (2010) 487.
[11]        N. Lu, L. Wang, L. Li, M. Liu, "A review for compact model of graphene field-effect transistors," Chinese Physics B, 26 (2017). 036804.
[12]        A. Celis, M. Nair, A. Taleb-Ibrahimi, E. Conrad, C. Berger, W. De Heer, et al., "Graphene nanoribbons: fabrication, properties and devices." Journal of Physics D: Applied Physics, 49 (2016) 143001.
[13]        T. Fang, A. Konar, H. Xing, D. Jena, "Mobility in semiconducting graphene nanoribbons: Phonon, impurity, and edge roughness scattering." Physical Review B, 78 (2008) 205403.
[14]        A. Naeemi. J. D. Meindl, "Conductance modeling for graphene nanoribbon (GNR) interconnects." IEEE electron device letters,  28 (2007) 428.
[15]        P. Zhao, M. Choudhury, K. Mohanram, J. Guo, "Analytical theory of graphene nanoribbon transistors." Design and Test of Nano Devices, Circuits and Systems, 2008 IEEE International Workshop on, pp. 3-6, 2008
[16]        S. Mehmet Gokhan, "The effects of vacancy location and concentration on the transport properties of armchair and zigzag graphene nanoribbons." Materials Research Express (2019).
[17]        S. Hong, Y. Yoon, J. Guo, "Metal-semiconductor junction of graphene nanoribbons." Applied Physics Letters, 92 (2008) 083107.
[18]        H. Sevinçli, M. Topsakal, S. Ciraci, "Superlattice structures of graphene-based armchair nanoribbons." Physical Review B, 78 (2008) 245402.
[19]        B. Fan and S. Chang, "Confined state energies in AGNR semiconductor–semiconductor heterostructure." Physics Letters A, 381 (2017) 319.
[20]        Y. Lv, W. Qin, C. Wang, L. Liao, X. Liu, "Recent Advances in Low‐Dimensional Heterojunction‐Based Tunnel Field Effect Transistors." Advanced Electronic Materials, 5 (2019) 1800569.
[21]        M. Moradinasab, M. Pourfath, M. Fathipour, and H. Kosina, "Numerical study of graphene superlattice-based photodetectors." IEEE Transactions on Electron Devices, 62 (2015) 593.
[22]        http://www.quantum-espresso.org/resources/tutorials
[23]        F. Giustino, "Materials modelling using density functional theory: properties and predictions" Oxford University Press (2014).
[24]        R. M. Martin, "Electronic structure: basic theory and practical methods." Cambridge university press (2004).
[25]        A. Shokuhi Rad, M. Esfahanian, S. Maleki, G. Gharati, "Application of carbon nanostructures toward SO2 and SO3 adsorption: a comparison between pristine graphene and N-doped graphene by DFT calculations." Journal of Sulfur Chemistry, 37 (2016) 176.
[26]        E. Rudberg, P. Sałek, Y. Luo, "Nonlocal exchange interaction removes half-metallicity in graphene nanoribbons." Nano letters, 7 (2007) 2211.
[27]        G. Gui, J. Li, and J. Zhong, "Band structure engineering of graphene by strain: first-principles calculations." Physical Review B, 78 (2008) 075435.
[28]        Y. W. Son, M. L. Cohen, S. G. Louie, "Energy gaps in graphene nanoribbons." Physical review letters, 97 (2006) 216803.
[29]        N. Merino-Díez, A. Garcia-Lekue, E. Carbonell-Sanromà, J. Li, M. Corso, L. Colazzo, et al., "Width-dependent band gap in armchair graphene nanoribbons reveals Fermi level pinning on Au (111)." ACS nano, 11 (2017) 11661.