[1] M. Jamiati, B. Khoshnevisana, M. Mohammadib, "Second- and third-order elastic constants of kesterite CZTS and its electronic and optical properties under various strain rates." Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 40(8) (2018) 977.
[2] A. Kowsar, S. F. U. Farhad, "High Efficiency Four Junction III-V Bismide Concentrator Solar Cell: Design, Theory, and Simulation." International Journal of Renewable Energy Research (IJRER), 8 (2018) 17621769.
[3] D. Jeyakumar Ramanujama, et al., "Flexible CIGS, CdTe and a-Si:H based thin film solar cells: A review." Progress in Materials Science, 110 (2020) 100619.
[4] R. Light trapping in thin silicon solar cells: A review on fundamentals and technologies, 7 (2021) 3440.
[5] C. Romain, et al., "Advanced alkali treatments for high-efficiency Cu(In, Ga)Se2 solar cells on flexible substrates." Adv. Energy Mater, 9 (2019) 1900408.
[6] A. Bosio, S. Pasini, N. Romeo. Advances in Thin Films for Photovoltaic,
10(4) (2020) 344
.
[7] Y. Wu, et al., "Synthesis and photovoltaic application of copper (I) sulfide nanocrystals," Nano letters, 8 (2008) 2551.
[8] M. A. Green, et al., "Solar cell efficiency tables (version 52)." Progress in Photovoltaics: Research and Applications, 26 (2018) 427.
[9] A. Kowsar, et al., " Progress in Major Thin-film Solar Cells: Growth Technologies, Layer Materials and Efficiencies." INTERNATIONAL JOURNAL of RENEWABLE ENERGY RESEARCH, 9(2) (2019) 579.
[10] U. Rau, H. W. Schock, "Cu (In, Ga) Se 2 solar cells," in Clean Electricity from Photovoltaics, ed: World Scientific, (2001) 277-345.
[11] S. Wagner, J. Shay, P. Migliorato, H. Kasper, "CuInSe2/CdS heterojunction photovoltaic detectors." Applied Physics Letters, 25 (1974) 434.
[12] L. L. Kazmerski, F. R. White, G. K. Morgan, “Thin-film CuInSe2/CdS heterojunction solar cells.” Applied Physics Letters, 29(4) (1976) 268.
[13]R. Mickelsen, W. Chen, "Development of a 9.4% efficient thin-film CuInSe2/CdS solar cell." in 15th photovoltaic specialists conference, (1981) 800.
[14]J. Tuttle, et al., "Accelerated publication 17.1% efficient Cu (In, Ga) Se2- based thin- film solar cell." Progress in Photovoltaics: Research and Applications, 3 (1995) 235.
[15]M. A. Contreras, et al., "Progress toward 20% efficiency in Cu (In, Ga) Se2 polycrystalline thin- film solar cells." Progress in Photovoltaics: Research and applications, 7 (1999) 311.
[16] I. Repins, et al., "Characterization of 19.9%efficient CIGS absorbers," in Photovoltaic Specialists Conference, 2008. PVSC'08. 33rd IEEE, (2008) 1-6.
[17]T. Satoh, et al., "Cigs solar cells on flexible stainless steel substrates," in Photovoltaic Specialists Conference, 2000. Conference Record of the Twenty-Eighth IEEE, (2000), 567-570.
[18] R. Wuerz, et al., "CIGS thin-film solar cells on steel substrates." Thin Solid Films, 517 (2003) 24152418.
[19]C. Shi, et al., "Cu (In, Ga) Se2 solar cells on stainless-steel substrates covered with ZnO diffusion barriers." Solar Energy Materials and Solar Cells, 93 (2009) 654.
[20]B. M. Başol, et al., "Flexible and light weight copper indium diselenide solar cells on polyimide substrates," Solar Energy Materials and Solar Cells, 43 (1996) 9398.
[21]M. Feli, F. Parandin, "A Numerical Optimization of an Efficient Double Junction InGaN/CIGS Solar Cell." J. Electr. Comput. Eng. Innovations, 6(1) (2018) 53.
[22] H. Zachmann, et al., "Characterisation of Cu(In, Ga)Se2-based thin film solar cells on polyimide." Thin Solid Films, 517 (2009) 2209.
[23]B. M. Başol, et al., "Copper indium diselenide thin film solar cells fabricated on flexible foil substrates." Solar Energy Materials and Solar Cells, 29 (1993) 163.
[24] M. A. Green, et al., "Solar cell efficiency tables (version 42)." Progress in Photovoltaics: Research and Applications, 5 (2013) 827.
[25] M. Powalla, et al., "Advances in Cost-Efficient Thin-Film Photovoltaics Based on Cu(In,Ga)Se2." Engineering, 3 (2017) 445.
[26] J. Parkes, R. D. Tomlinson, M. J. Hampshire, " Crystal data for CuInSe2." J. Appl. Crystallogr., 6 (1973) 414.
[27] S. C. Abrahams, J. L. Bernstein, "Piezoelectric nonlinear optic CuGaSe2 and CdGeAs2: Crystal structure, chalcopyrite microhardness, and sublattice distortion." J. Chem. Phys., 61 (1974) 1140.
[28] S. Chen, X. G. Gong, S. H. Wei, "Band-structure anomalies of the chalcopyrite semiconductors CuGaX2 versus AgGaX2 (X=S and Se) and their alloys." Phys. Rev. B, 75 (2007) 205209.
[29] C. D. R. Ludwig, T. Gruhn, C. Felser, " Indium-Gallium Segregation in CuInxGa1-xSe2: An Ab Initio-Based Monte Carlo Study." Phys. Rev. Lett., 105 (2010) 025702.
[30] J. Osuntokun, P. A. Ajibade, "Structural and Thermal Studies of ZnS and CdS Nanoparticles in Polymer Matrices." Journal of Nanomaterials, 2016 (2016) 3296071.
[31] J. L. Shay, H. M. Kasper, L. M. Schivone, "Electronic Structure of AgInSe2 and CuInSe2." Phys. Rev. B, 7 (1973) 4485.
[32] J. L. Shay and H. M. Kasper, " Direct Observation of Cu-d Levels in I-III-VI2 Compounds." Phys. Rev. Lett., 29 (1972) 1162.
[33] U. Rau, K. Taretto, S. Siebentritt, "Grain boundaries in Cu(In, Ga)(Se, S)2 thin-film solar cells." Appl. Phys. A Mater. Sci. Process., 96 (2009) 221.
[34] P. Palacios, et al., "Thermodynamics of the Formation of Ti- and Cr-doped CuGaS2 Intermediate-band Photovoltaic Materials." J. Phys. Chem. C, 112 (2008) 9525.
[35] T. D. Lee, A. Ebong, “Thin film solar technologies: a review.” in 2015 12th International Conference on High-capacity Optical Networks and Enabling/Emerging Technologies (HONET), Islamabad, Pakistan, (2015) 1.
[36] Y. C. Wang, H. P. D. Shieh, “Double-graded bandgap in Cu(In,Ga)Se2 thin film solar cells by low toxicity selenization process.” Applied Physics Letters, 105(7) (2014) 073901.
[37] J. Ramanujam, U. P. Singh, “Copper indium gallium selenide based solar cells – a review.” Energy & Environmental Science, 10(6) (2017) 1306.
[38] J.E. Jaffe, A. Zunger, “Electronic structure of the ternary chalcopyrite semiconductors CuAlS2, CuGaS2, CuInS2, CuAlSe2, CuGaSe2, and CuInSe2." Phys. Rev. B, 28 (1983) 5822.
[39] S. H. Weiand, L. G. Ferreira, A. Zunger, "First-principles calculation of the order-disorder transition in chalcopyrite semiconductors." Phys. Rev. B, 45 (1992) 2533.
[40] S. H. Weiand, A. Zunger, " Band offsets at the CdS/CuInSe2 heterojunction." Appl. Phys. Lett., 63 (1993) 2549.
[41] S. H. Weiand, A. Zunger, "Band offsets and optical bowings of chalcopyrites and Zn‐based II‐VI alloys." J. Appl. Phys., 78 (1995) 3846.
[42] M. Gloeckler, J. R. Sites, "Guidelines for Optimization of the Absorber Layer Energy Gap for High Efficiency Cu(In,Ga)Se2 Solar Cells." J. of Phys. and Chem. of Solids, 66 (2005) 1891.
[43] S. B. Zhang, S. H. Weiand, A. Zunger, "Stabilization of Ternary Compounds via Ordered Arrays of Defect Pairs." Phys. Rev. Lett., 78 (1997) 4059.
[44] S. B. Zhang, S. H. Weiand, A. Zunger, H. Katayama-Yoshida, " Defect physics of the CuInSe2 chalcopyrite semiconductor." Phys. Rev. B, 57 (1998) 9642.
[45] S. H. Weiand, S. B. Zhang, and A. Zunger, " Effects of Na on the electrical and structural properties of CuInSe2." J. Appl. Phys., 85 (1999) 7214.
[46] S. H. Weiand, S.B. Zhang, and A. Zunger, "Effects of Ga addition to CuInSe2 on its electronic, structural, and defect properties." Appl. Phys. Lett., 72 (1998) 3199.
[47] C. H. Huang, "Effects of Ga content on Cu(In,Ga)Se2 solar cells studied by numerical modeling." J. of Phys. and Chem. of Solids, 69 (2008) 330.
[48] Z. A. Shukri, et al., "Preliminary photovoltaic cells with single crystal CIS substrates." Solar Energ. Mater. and Solar Cells, 37 (1995) 395.
[49] M. Gloeckler, J. R. Sites, W. K. Metzger, "Grain-boundary recombination in Cu(In,Ga)Se2 solar cells." J. Appl. Phys, 98 (2005) 113704.
[50] J. M. Raulot, C. Domain, J.F. Guillemoles, "Ab initio investigation of potential indium and gallium free chalcopyrite compounds for photovoltaic application." J. of Phys. and Chem. of Solids, 66(11) (2005) 2019.
[51] W. N. Shafarman, S. Siebentritt and L. Stolt, Handbook of Photovoltaic Science and Engineering, Wiley, New York, 2011.
[52] P. Jackson, et al., "High quality baseline for high efficiency, Cu(In1−x,Gax)Se2 solar cells." Progress in Photovoltaics: Research and Applications.,15 (2007) 507.
[53] H. Zhao, C. Persson, "Optical properties of Cu(In,Ga)Se2 and Cu2ZnSn(S,Se)4." Thin Solid Films, 519 (2011) 7508.
[54] M. Chandramohan, S.Velumani, T. Venkatachalam, "Band structure calculations of Cu(In1−xGax)Se2." J. Materials Science and Engineering B, 174 (2010) 200.
[55] A. Bouich, et al., " Deposit on different back contacts: to high‑quality thin films for photovoltaic application." Journal of Materials Science: Materials in Electronics, 30(23) (2019) 20832.
[56] C. Persson, "Electronic and optical properties of Cu2ZnSnS4 and Cu2ZnSnSe4." J. Appl. Phys., 107 (2010) 053710.
[57] T. Kawashima, et al., "Optical constants of CuGaSe2 and CuInSe2." J. Appl. Phys., 84 (1998) 5202.
[58] N. N. Syrbu, et al., "Lattice vibrations in crystals." J. Phys. B, 229 (1997) 199.
[59]F. Ghavami, A. Salehi, "High-efficiency CIGS solar cell by optimization of doping concentration thickness and energy band gap." Modern Physics Letters B, 34(4) (2020) 2050053.
[60]P. Reinhard, et al., "Review of Progress Toward 20% Efficiency Flexible CIGS Solar Cells and Manufacturing Issues of Solar Modules." IEEE Journal of Photovoltaics, 3(1) (2013) 572.
[61]W. N. Shafarman, S. Siebentritt, L. Stolt, " Cu(InGa)Se2 solar cells in: Luque A, Hegedus S," Handbook of photovoltaic science and engineering, England: John Wiley & Sons Ltd; pp. 546-599, 2010.
[62] R. Scheer, H. W. Schock, " Chalcogenide Photovoltaics: Physics, Technologies and Thin Film Devices." John Wiley & Sons Ltd; pp. 154-172, 2011.
[63]A. Chirilă, et al., " Potassium-induced surface modification of thin films for high efficiency solar cells." Nature Materials, 12(12) (2013) 1107.
[64]T. Feurer, et al., "Progress in Thin Film CIGS Photovoltaics – R&D, Manufacturing and Applications." Progress in Photovoltaics, 25(7) (2017) 645.
[65]K. Kushiya, " CIS-based thin-film PV technology in solar frontier K.K " Solar Energy Materials and Solar Cells, 122 (2014) 309.
[66]" Solar Frontier Achieves World Record Thin-Film Solar Cell Efficiency: 22.3%." Solar Frontier company webpageDecember 8, 2015Accesed April 25, 2016.
[67] S. Duchemin et al., in: Photovoltaic Solar Energy (Proc.8th European Conf., Florence, Italy, (1988), P. 1038- 1042.
[68] T. Nakada et al., in:Photovoltaic Energy Conversion (IEEE First World Conf., Hawaii, USA, 1994), 95- 98.
[69] M. A. Green, "The path to 25% silicon solar cell efficiency: History of silicon cell evolution." Progr. in Photovolt.: Research and Applications, 17 (2009) 183.
[70] T. Nakada, T.Mise, "High-efficiency superstrate type cigs thin film solar cells with graded band gap absorber layers.” inProceedings of the 17th European Photovoltaic Solar Energy Conference, pp. 1027–1030, Munich, Germany, 2001.
[71] F. Dimroth, et al., "Wafer bonded four-junction GaInP/GaAs//GaInAsP/GaInAs concentrator solar cells with 44.7% efficiency." Progr. in Photovolt.: Research and Applications, 22 (2014) 277.
[72] S. Keshmiri, H.S. Sharbati, "Model for increased efficiency of CIGS solar cells by a stepped distribution of carrier density and Ga in the absorber layer." Science China Phys. Mech. and Astronomy, 56(8) (2013) 1533.
[73] P. Jackson, et al., "Compositional investigation of potassium doped Cu(In,Ga)Se2 solar cells with efficiencies up to 20.8%." J. Physica Status Solidi (RRL)-Rapid Research Lett., 8 (2014) 219.
[74] H. Ullah, B. Mari, H. N. Cui, "Investigation on the Effect of Gallium on the Efficiency of CIGS Solar Cells through Dedicated Software." J. Applied Mech. and Mater.,448 (2014) 1497.
[75] M. Tawheed Kibria, et al., "A Review: Comparative studies on different generation solar cells technology." Proceedings of 5th International Conference on Environmental Aspects of Bangladesh [ICEAB 2014].
[76] J. Hedstrom, et al., " Zno/Cds/Cu(in,Ga)Se2 Thin-Film Solar-Cells with Improved Perfornance." Conference Record of the Twenty Third Ieee Photovoltaic Specialists, (1993) 364.
[77] D. Rudmann, et al., "Sodium incorporation strategies for CIGS growth at different temperatures." Thin Solid Films, 480 (2005) 55.
[78] D. Rudmann, et al., " Efficiency enhancement of Cu(In,Ga)Se₂ solar cells due to post-deposition Na incorporation." Applied Physics Letters, 84(7) (2004) 1129.
[79] P. Reinhard, et al., " Features of KF and NaF Postdeposition Treatments of Cu(In,Ga)Se2 Absorbers for High Efficiency Thin Film Solar Cells." Chemistry of Materials, 27(16) (2015) 5755.
[80] L. M. Mansfield, et al., " Enhanced Performance in Cu(In,Ga)Se Solar Cells Fabricated by the Two-Step Selenization Process With a Potassium Fluoride Postdeposition Treatment." IEEE Journal of Photovoltaics, 4(6) (2014) 1650.
[81] H. Ullah, B. Marí, L. M. Sánchez Ruiz, " Comparative analysis of CIGS thin film and Multilayer Solar cells." Proc.Int. Conf. Engineering Education and research, Riga, Latviya, ICEE/ICIT 2014, (2014) 103.