Effect of hydrostatic pressure on optical absorption spectrum AlGaN/GaN multi-quantum wells

Document Type : Original Article

Authors

Department of Physics, Islamic Azad University, Khoy Branch, Khoy, Iran

Abstract

The current paper investigates the optical absorption spectrum of Al_0.3 Ga_0.7 N/GaN multi-quantum well (MQW) under hydrostatic pressure. To obtain the parameters of Al_0.3 Ga_0.7 N/GaN MQW, such as electron and hole density, bandgap, interband transition energy, electron-hole wave functions, effective mass and dielectric constant, and the hydrostatic pressure effects are taken into account. Finite difference techniques have been used to acquire energy eigenvalues and their corresponding eigenfunctions of  Al_0.3 Ga_0.7 N/GaN  MQW and the hole eigenstates are calculated via a 6 × 6 k.pmethod under an applied hydrostatic pressure. It was found that the depth of the quantum wells, bandgaps, band offset, the electron, and hole density increases with the hydrostatic pressure. Also, as the pressure increases, the electron and hole wave functions will have less overlap, the amplitude of the absorption coefficient increases, and the binding energy of the excitons decreases. A change in pressure of up to 10 GPa causes the absorption coefficients peaks of light and heavy holes to shift to low wavelengths of up to 32 nm.

Keywords

Main Subjects

Article Title [Persian]

اثر فشار هیدروایستاتیکی بر طیف جذب نوری چاه های کوانتم چند گانه AlGaN/GaN

Authors [Persian]

  • رجب یحیی زاده
  • زهرا هاشم پور

گروه فیزیک، دانشگاه آزاد اسلامی واحد خوی، خوی، ایران

Abstract [Persian]

در این مقاله طیف جذب نوری چاه های کوانتم چند گانه Al_0.3 Ga_0.7 N/GaN تحت فشار هیدروایستاتیکی مورد بررسی قرار گرفته است. برای بدست آوردن پارامتر های Al_0.3 Ga_0.7 N/GaN ، نظیر چگالی الکترون و حفره، گاف نوار، انرژی گذار بین باندی، توابع موج الکترون و حفره، جرم موثر و ثابت دی الکتریک، اثر فشار الکتروایستاتیکی در نظر گرفته شده است. در این ساختار از روش اختلاف کم برای بدست آوردن ویژه مقادیر و ویژه حالت های الکترونی و از روش k.p 6×6 برای ویژه حالت های حفره تحت فشار هیدروایستاتیکی استفاده شده است. بعد از بررسی به این تیجه رسیدیم که عمق چاه های کوانتم، نوارهای انرژی، ناپیوستگی نواری و چگالی الکترون و حفره تحت فشار هیدرو ایستاتیک افزایش می یابند. همچنین با افزایش فشار همپوشی توابع موج الکترون و حفره کم ، دامنه ضریب جذب افزایش و انرژی بستگی اکسایتون کاهش می یابد. افزایش فشار به مقدار 10GPa باعث می شود که پیک های جذب مربوط به حفره های سبک و سنگین به اندازه32nm به سمت طول موج های کم منتقل شوند.

Keywords [Persian]

  • فشار هیدروایستاتیکی
  • جذب نوری
  • اکسایتون
  • چاه کوانتم چند گانه
[1] R. Chu, “GaN power switches on the rise: Demonstrated benefits and unrealized potentials.”, Applied Physics Letters, 116 (2020) 090502.
[2] G. Hu, L. Lib, Y. Zhang, “Two-dimensional electron gas in piezotronic devices.” Nano Energy, 59 (2019) 667.
[3] R. Yahyazadeh, Zahra hashempour, “Effects of Hydrostatic Pressure and Temperature on the AlGaN/GaN High Electron Mobility Transistors. Journal of Interfaces.” Thin films and Low dimensional systems, 2 (2019) 183.
[4] R. Yahyazadeh, Z. Hashempour, “Numerical Optimization for Source-Drain Channel Resistance of AlGaN/GaN HEMTS.” Journal of Science and technology, 11 (2019) 1.
[5] C. M. Duque, A. L. Morales, M. E. Mora-Ramos, C. A. Duque, “Exciton-related optical properties in zinc-blende GaN/InGaN quantum wells under hydrostatic pressure.” Physica Status Solidi (b), 252 (2015) 670.
[6] Z. H. Zhang, J. H. Yuan, K. X. Guo, “The Combined Influence of Hydrostatic Pressure and Temperature on Nonlinear Optical Properties of GaAs/Ga0.7Al0.3As Morse Quantum Well in the Presence of an Applied Magnetic Field.” Materials, 11 (2018) 668.
[7] W. Bardyszewski, S. P. Lepkowski, H. Teisseyre, “Pressure Dependence of Exciton Binding Energy in GaN/AlxGa1¡xN Quantum Wells.” Acta Physica Polonica A, 119 (2011) 663.
[8] A. Asgari , Kh. Khalili, “Temperature dependence of InGaN/GaN multiple quantum well based high efficiency solar cell.” Solar Energy Materials & Solar Cells, 95 (2011) 3124.
[9] P. J. Stevens, M. Whitehea, G. Parry, K. Woobridge, “Computer Modeling of the Electric Field Dependent Absorption Spectrum of Multiple Quantum Well Material.” IEEE Journal of Quantum Electronics, 24(1988) 2007.
[10] Bi. Chouchen, M. H. Gazzah, A. Bajahzar, Hafedh Belmabrouk, “Numerical Modeling of the Electronic and Electrical Characteristics of InGaN/GaN-MQW Solar Cells.” Materials, 12 (2019) 1241.
[11] R. Belghouthi, J. P. Salvestrini, M. H. Gazzeh, and C. Chevallier, “Analytical modeling of polarization effects in InGaN double hetero-junction p-i-n solar cells.” Superlattices and Microstructures, 100(2016) 168.
[12] Bi. Chouchen, et al., “Numerical modeling of InGaN/GaN p-i-n solar cells under temperature and hydrostatic pressure effects.” AIP Advances, 9 (2019) 045313.
[13] X. Huang, “Piezo-Phototronic Effect in a Quantum Well Structure.” ACS Nano, 10 (2016) 5145.
[14] O. Ambacher, A. B Foutz, J Smart, J. R Shealy, N. G Weimann, K Chu, et al., “Two dimensional electron gases induced by spontaneous and piezoelectric polarization in undoped and doped AlGaN/GaN heterostructures.” Journal of Applied Physics, 87 (2000) 334.
[15] O. Ambacher, J. Majewski, C. Miskys, et al., “Pyroelectric properties of Al (In) GaN/GaN hetero- and quantum well structures.” Journal of Physics Condensed Matter, 14 (2002) 3399.
[16] Z. J. Feng, Z. J. Cheng, and H. Yue, “Temperature dependence of Hall electron density of GaN-based heterostructures.” Chinese Physics, 13 (2004) 1334.
[17] V. Fiorentini, F. Bernardini, O. Ambacher. “Evidence for nonlinear macroscopic polarization in III–V nitride alloy Heterostructures.” Applied Physics Letters, 80 (2002) 1204.
[18] P. Perlin, L. Mattos, N. A. Shapiro, J. Kruger, W. S. Wong, T. Sands, N. W. Cheung, E. R. Weber, “Reduction of the energy gap pressure coefficient of GaN due to the constraining presence of the sapphire substrate.” Journal of Applied Physics, 85(1999) 2385.
[19] K. J. Bala, A. J. Peter, C. W. Lee, “Simultaneous effects of pressure and temperature on the optical transition energies in a Ga0.7In0.3N/GaN quantum ring.” Chemical Physics, 495 (2017) 42.
[20] M. Yang et al., “Effect of polarization coulomb field scattering on parasitic source access resistance and extrinsic transconductance in AlGaN/GaN heterostructure FETs.” IEEE Transactions on Electronic Devices, 63 (2016) 1471.
[21] I. Vurgaftman, J. R Meyer, L. R. R Mohan, “Band parameters for III–V compound semiconductors and their alloys.” Journal Applied Physics, 89 (2001) 5815.
[22] H. Dakhlaoui, “The effects of doping layer location on the electronic and optical properties of GaN step quantum well.” Superlattices and Microstructures, 97 (2016) 439.
[23] P. Perlin, L. Mattos, N. A. Shapiro, J. Kruger, W. S. Wong, T. Sands, N. W. Cheung, E. R. Weber, “Reduction of the energy gap pressure coefficient of GaN due to the constraining presence of the sapphire substrate.” Journal Applied Physics, 85 (1999) 2385.
[24] B. Jogai, “Influence of surface states on the two-dimensional electron gas in AlGaN/GaN heterojunction field-effect transistors.” Journal of Applied Physics, 93 (2003) 1631.
[25] B. Jogai, “Parasitic Hole Channels in AlGaN/GaN Heterojunction Structures.”, physica status solidi b, 233 (2002) 506.