Numerical investigation of a new hybrid system, integrating parabolic trough concentrator with a cylindrical thermoelectric generator

Document Type : Original Article

Authors

1 ERDYS Laboratory, MEEM & Amp; Amp; DD Group, Hassan II University of Casablanca, FSTM BP 146 Mohammedia 20650, Morocco

2 ERDYS Laboratory, MEEM & Amp; DD Group, Hassan II University of Casablanca, FSTM BP 146 Mohammedia 20650, Morocco

3 Materials Science Unit / DERS / CNESTEN National Centre for Energy, Sciences and Nuclear Techniques, Rabat, Morocco

4 Laboratory of Signals, Distributed Systems and Artificial Intelligence, ENSET, Hassan II University, Mohammedia, Morocco

5 LAMCSCI, Faculty of Sciences, Mohammed V University, B.P. 1014, Rabat, Morocco

6 Engineering Faculty, Ataturk University, 25240 Erzurum, Turkey

7 CEMHTI-CNRS Site Cyclotron, 3A rue de la Férollerie, 45071 Orléans, France

Abstract

Nowadays, exploitation and production of maximum energy from the solar spectrum is a major concern. In the present paper, a numerical study of a new hybrid system consisting of a parabolic trough concentrator coupled with a cylindrical thermoelectric generator is performed using the Gauss-Seidel iterative method. A realistic climatic condition is used regarding direct sunlight and ambient temperature. The effects of thermoelectric generator thickness together with hot and cold flow on the electrical and thermal performance are analyzed and discussed. In order to validate the results of the numerical model, a new validation method has been used. The obtained results show a good agreement with the exact results. Furthermore, for a cold mass flow rate of 0.25 kg/s, the maximum thermal efficiency is attained at 60.646%, along with an electrical efficiency of 9.72% corresponding to 273.15 W in addition to power output.

Keywords

Main Subjects

Article Title [فارسی]

بررسی عددی یک سیستم ترکیبی جدید ترکیب یک ناودان متمرکز کننده سهموی با یک مولد ترموالکتریک استوانه ای

Authors [فارسی]

  • Abderrahim Habchi 1
  • Bouchaib Hartiti 2
  • Hicham Labrim 3
  • Salah Fadili 2
  • Naoual Belouaggadia 4
  • Mohammed Benaissa 5
  • Abdelilah Benyoussef 5
  • Hamid Ez-Zahraouy 5
  • Mehmet Ertugrul 6
  • Esidor ntsoenzok 7

Abstract [فارسی]

امروزه، بهره برداری و تولید حداکثر انرژی از طیف خورشیدی یک نگرانی بزرگ است. در این مقاله، یک مطالعه عددی از یک سیستم ترکیبی جدید متشکل از یک ناودان متمرکز کننده سهموی به همراه یک مولد ترموالکتریک استوانه ای با استفاده از روش تکرار شونده گاوس-سایدل انجام شده است. برای تابش مستقیم خورشید و دمای محیط از یک شرایط اقلیمی واقع بینانه در نظر گرفته شده است. اثرات ضخامت مولد گرما الکتریکی به همراه شارش جریان گرم و سرد بر عملکرد الکتریکی و حرارتی تحلیل و بحث شده است. به منظور اعتبارسنجی نتایج مدل عددی، از روش اعتبارسنجی جدیدی استفاده شده است. نتایج بدست آمده توافق خوبی با نتایج عینی دارند. علاوه بر این، برای آهنگ شارش جرم سرد برابر با 0/25 کیلوگرم بر ثانیه، حداکثر بازده حرارتی در 60/646 درصد حاصل می شود، که همراه با بازده الکتریکی 9/72 درصد متناظر با 273/15 وات توان خروجی بیشتر است.

Keywords [فارسی]

  • ناودان سهموی ترکیبی
  • مولد ترموالکتریک
  • توان خروجی
  • بازده
  • آهنگ شارش جرم گرم/سرد
[1] K.  Kakaei, M. D. Esrafili, A. Ehsani. "Gas Convertor and Storage." Interface Science and Technology, 27 (2019) 387.
[2] O. Badr, S. D. Probert. "Sinks and environmental impacts for atmospheric carbon monoxide." Applied Energy, 50 (1995) 339.
[3] W. Adrian, R. Sonia, A. Dennis, E. Nazik, E. Gerardo, A. Lana. Renewable Capacity Statistics 2020 n.d. https://www.irena.org/publications/2020/Mar/Renewa ble-Capacity-Statistics-2020.
[4] M. Daugy. Monthly electricity statistics n.d. https://www.iea.org/reports/monthly-electricitystatistics.
[5] P. Sundarraj, D. Maity, S. S. Roy, R. A. Taylor. "Recent advances in thermoelectric materials and solar thermoelectric generators – a critical review." RSC Advances, 4 (2014) 46860. 
[6] A. Z. Sahin, K. G. Ismaila, B. S. Yilbas, A. AlSharafi. "A review on the performance of photovoltaic/thermoelectric hybrid generators." International Journal of Energy Research, 44 (2020) 3365. 
[7] S. Soltani, A. Kasaeian, T. Sokhansefat, M. B. Shafii. "Performance investigation of a hybrid photovoltaic/thermoelectric system integrated with parabolic trough collector." Energy Conversion and Management, 159 (2018) 371. 
[8] N. Miljkovic, E. N. Wang. "Modeling and optimization of hybrid solar thermoelectric systems with thermosyphons." Solar Energy 85 (2011) 2843. 
[9] C. Li, M. Zhang, L. Miao, J. Zhou, Y. P. Kang, C. A. J. Fisher et al. "Effects of environmental factors on the conversion efficiency of solar thermoelectric cogenerators comprising parabola trough collectors and thermoelectric modules without evacuated tubular collector." Energy Conversion and Management, 86 (2014) 86. 
[10] S. Mahmoudinezhad, A. Rezania, L. A. Rosendahl. "Behavior of hybrid concentrated photovoltaic-thermoelectric generator under variable solar radiation." Energy Conversion and Management 164 (2018) 443. 
[11] P. Sundarraj, S. S. Roy, R. A. Taylor, D. Maity. "Performance analysis of a hybrid solar thermoelectric generator." Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 38 (2016) 2977.
[12] A. M. Saleh, Jr DWM, H. I. Abu-Mulaweh. "Flat-Plate Solar Collector in Transient Operation: Modeling and Measurements" 2013.
[13] A. Elamim, B. Hartiti, A. Haibaoui, A. Lfakir, P. Thevenin. "Analysis and comparison of different PV technologies for determining the optimal PV panels- A case study in Mohammedia, Morocco." IOSR JEEE, 12 (2017) 37.
[14] Y. Marif. "Caractérisation d’un concentrateur cylindroparabolique de dimensions réelles au sud de l’Algérie: Région d’Ouargla 2015."http://docplayer.fr/79503677-Caracterisation-d-unconcentrateur-cylindroparabolique-de-dimensionsreelles-au-sud-de-l-algerie-region-d-ouargla.html.
[15] A. Faddouli, H. Labrim, S. Fadili, B. Hartiti, A. Habchi, M. Ertugrul, et al. "Feasibility and performance investigation of a new smart system integrating planar/tubular thermoelectric generators with solar flat plate collector." Energy Conversion and Management, 199 (2019) 111980. 
[16] Y. Marif, H. Benmoussa, H. Bouguettaia, M. M. Belhadj, M. Zerrouki. "Numerical simulation of solar parabolic trough collector performance in the Algeria Saharan region." Energy Conversion and Management, 85 (2014) 521.
[17] Y. Marif. "Caractérisation d’un concentrateur cylindroparabolique de dimensions réelles au sud de l’Algérie: Région d’Ouargla." Thesis. Kasdi Merbah Ouargla, 2015.
[18] F. Jamadi. "Experimantal investigation of effect of oil mass flow changes on parabolic trough collector efficiency in a solar water heater system." International Journal on Technical and Physical Problems of Engineering, 8 (2016) 7.
[19] J. A. Duffie, W. A. Beckman. Solar Engineering of Thermal Processes n.d.:928.
[20] M. Mohsenzadeh, M. B. Shafii, H. Jafari mosleh. "A novel concentrating photovoltaic/thermal solar system combined with thermoelectric module in an integrated design." Renewable Energy 113 (2017) 822.
[21] A. Akbari, E. Mohammadian, S. A. Alavi Fazel, M. Shanbedi, M. Bahreini, M. Heidari, et al. "Natural Convection from the Outside Surface of an Inclined Cylinder in Pure Liquids at Low Flux." ACS Omega, 4 (2019) 7038.
[22] Yunus A çengel. Heat and Mass Transfer: A practical Approach. Third edition. 2006.
[23] G. A. Quadir, I. A. Badruddin, N. J. Salman Ahmed. "Numerical investigation of the performance of a triple concentric pipe heat exchanger." International Journal of Heat and Mass Transfer 75 (2014) 165. 
[24] Frank P. Incropera, David P. DeWitt, Theodore L. Bergman, Adrienne S. Lavine. Fundamentals of Heat and Mass Transfer, Sixth Edition 2007.