Optical MoS2 nanosheets gas sensor: experimental study

Document Type : Original Article

Authors

1 Research Institute for Applied Physics & Astronomy (RIAPA), University of Tabriz, Tabriz, Iran

2 Photonics & amp; Plasma engineering Department, Faculty of Physics, University of Tabriz, Tabriz, Iran

Abstract

We propose a full optical method for gas sensing by few-layer MoS2 nanosheets
obtained by liquid-phase epitaxy (LPE). Our samples are fully characterized by
transmission electron microscopy (TEM), photoluminescent (PL) spectroscopy, and Xray
diffraction (XRD). Further characterization and evaluation of gas sensing
application, had been done by implementing ultraviolet-visible spectroscopy (UV/Vis).
For CO2 gas which acts as a donor to our sample (based on the evaluation method that
used in this work), we calculate the response in the visible region equal to 15% while
in longer wavelengths (near-infrared) the response clearly decreased. Our experiments
show that using 2D transitional metal dichalcogenide (TMDC) materials for Gas
sensing applications may open a new horizon for using this kind of 2D material in
various types of optical sensors.

Keywords

Article Title [فارسی]

حسگر گاز اپتیکی، مبتنی بر نانو ورقه های مولیبدن دی سولفید: بررسی آزمایشگاهی

Authors [فارسی]

  • محمد شریف شازیله 1
  • سعید شجاعی 1 2
  • سهراب احمدی 1 2

1 پژوهشکده فیزیک کاربردی و ستاره شناسی، دانشگاه تبریز، تبریز، ایران

2 پژوهشکده فیزیک کاربردی و ستاره شناسی، دانشگاه تبریز، تبریز، ایران

Abstract [فارسی]

ما یک روش نوری کامل برای سنجش گاز توسط نانوذرات لایه ای مولیبدن دی سولفید که توسط لایه سازی فازی توسط محلول به دست آمده را ارائه می دهیم. نمونه ما به طور کامل با میکروسکوپ الکترونی عبوری، طیف سنجی فوتولومینسانس و پراش پرتونگاری اشعه ی ایکس مشخصه یابی می شود. توصیف بیشتر و ارزیابی کاربرد سنجش گاز ورقه های مولیبدن دی سولفید، با انجام طیف سنجی اشعه ماوراء بنفش و مرئی انجام شده است. برای ارزیابی خواص حسگری نمونه از گاز کربن دی اکسید استفاده شده است، ما پاسخ را در منطقه مرئی با 15٪ افزایش مشاهده می کنیم و اما در طول موجهای بالاتر (نزدیک مادون قرمز) این مقدار شدیدا کاهش پیدا میکند. آزمایشات ما نشان می دهد که استفاده از مواد دو بعدی دی کالکوژن فلزات واسطه برای کاربردهای سنجش گاز ممکن است افق جدیدی را برای استفاده از این نوع مواد در انواع حسگرهای نوری باز کند.

Keywords [فارسی]

  • مواد دو بعدی
  • حسگرهای گاز
  • دی کالکوژن فلزات واسطه
[1] I. Matias, S. Ikezawa, J. Corres, Fiber Optic Sensors: current status and future possibilities, Springer, 2016.
[2] K. Wetchakun et al., "Semiconducting metal oxides as sensors for environmentally hazardous gases." Sensors and Actuators B: Chemical, 160 (2011) 580.
[3] J. Ren et al., "Few-layer MoS2 dendrites as a highly active humidity sensor." Physica E: Lowdimensional Systems and Nanostructures, 116 (2020) 113782.
[4] C. Neto et al., "The electronic properties of graphene." Reviews of modern physics, 81 (2009) 109.
[5] B. Shivananju et al., "The Roadmap of Graphene‐Based Optical Biochemical Sensors." Advanced Functional Materials, 27 (2017) 1603918.
[6] D. Raeyani, S. Shojaei, S. AhmadiKandjani, "Optical graphene quantum dots gas sensors: experimental study." Materials Research Express, 7 (2020) 015608.
[7] M. Polini  et al., "Artificial honeycomb lattices for electrons, atoms and photons." Nature Nanotechnology, 8 (2013) 625. 
[8] S. Manzeli  et al., "2D transition metal dichalcogenides." Nature Reviews Materials, 2 (2017) 17033.
[9] L. Xiong, et al., "Research progress on the preparations, characterizations and applications of large scale 2D transition metal dichalcogenides films." FlatChem 21 (2020) 100161.
[10] Y. Jiandong, G. Yang, "2D group 6 transition metal dichalcogenides toward wearable electronics and optoelectronics." Journal of Applied Physics, 127 (2020) 030902.
[11] W. Qing Hua et al., "Electronics and optoelectronics of two-dimensional transition metal dichalcogenides." Nature nanotechnology, 7 (2012) 699. 
[12] L. Xiao, H. Zhu, "Two-dimensional MoS2: Properties, preparation, and applications." Journal of Materiomics, 1 (2015) 33.
[13] A. Wilson, A. D. Yoffe, "The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties." Advances in Physics, 18 (1969) 193. 
[14] C. Chunxiao et al., "Synthesis and Optical Properties of Large‐Area Single‐Crystalline 2D Semiconductor WS2 Monolayer from Chemical Vapor Deposition." Advanced Optical Materials, 2 (2014) 131.
[15] V. Fominski et al., "Ion-assisted deposition of MoSx films from laser generated plume under pulsed electric field." Journal of Applied Physics, 89 (2001) 1449.
[16] V. Nicolosi et al., "Liquid exfoliation of layered materials." Science, 340 (2013) 1226419.
[17] J. Shanshan et al., "Exfoliated MoS2 nanosheets as efficient catalysts for electrochemical hydrogen evolution." Electrochimica Acta, 109 (2013) 269.
[18] J. Coleman et al., "Two-dimensional nanosheets produced by liquid exfoliation of layered materials." Science, 331 (2011) 568. 
[19] A. Harith et al., "S-band Q-switched fiber laser using molybdenum disulfide (MoS2) saturable absorber." Laser Physics Letters, 13 (2016) 035103.
[20] G. Deepesh et al., "MoS2 quantum dotinterspersed exfoliated MoS2 nanosheets." ACS nano, 8 (2014) 5297.
[21] Z. Qiaohong et al., "Facile preparation of highlydispersed cobalt-silicon mixed oxide nanosphere and its catalytic application in cyclohexane selective oxidation." Nanoscale research letters, 6 (2011) 1.
[22] L. Hongxing et al., "Markedly different adsorption behaviors of gas molecules on defective monolayer MoS2: a first-principles study." Physical Chemistry Chemical Physics, 18 (2016) 15110.
[23] S. Mohapatra et al., "Modulation of gas adsorption and magnetic properties of monolayer MoS2 by antisite defect and strain." The Journal of Physical Chemistry C, 120 (2016) 14113.
[24] S. Byung, J. YongáSong. "Sensor based on chemical vapour deposition-grown molybdenum disulphide for gas sensing application." RSC advances, 6 (2016) 75839.
[25] A. Shokri, N. Salami. "Gas sensor based on MoS2 monolayer." Sensors and Actuators B: Chemical, 236 (2016) 378.
[26] Pallab Bhattacharya, Semiconductor optoelectronic devices. Prentice-Hall, Inc., 1994.
[27] R. C. Bailey et al., "Chemical and biological sensors and analytical methods II." The Electrochemical Society Proceedings, Pennington, NJ 511 (2001).