Photocatalytic degradation of Congo red by ZnO nanoparticles with different morphology

Document Type : Original Article


Department of Chemistry, East Tehran Branch, Islamic Azad University, Tehran, Iran


In this study, ZnO nanoparticles in three shapes, spherical, rod, and sheet are
synthesized by a hydrothermal method using three different surfactants, namely three
ethanol amine, cetyl three methyl ammonium bromide, and sodium dodecyl sulfate. In
all cases, the chemical composition, powder identification, morphology. and particle
size of the final product are characterized by Fourier transform infrared (FTIR), X-ray
diffraction (XRD), field emission scanning electronic microscopy (FESEM), EDX
elemental analysis, and UV-Vis spectroscopy. The photocatalytic activity of the
nanoparticles are investigated for degradation of organic pollutants (Congo red dye).
The removal tests of Congo red as a water organic pollutant indicates photocatalytic
activity and absorption ability of synthesized zinc oxides. Finally, the comparison of
the dye removal results show that the rod nanoparticle has more efficiency in the
degradation of Congo red with 97% yield over 2 hours at pH=8.


Article Title [فارسی]

تخریب فوتوکاتالیستی کنگورد توسط نانوذرات اکسید روی با مورفولوژی متفاوت

Author [فارسی]

  • نسیبه ملاحسنی

گروه شیمی،واحد تهران شرق،دانشگاه آزاد اسلامی، تهران، ایران

Abstract [فارسی]

در این مطالعه، نانوذرات اکسید روی در سه شکل کروی، میله ای و صفحه ای با استفاده از روش هیدروترمال و سه سورفکتانت متفاوت یعنی تری اتانول آمین ، ستیل تری متیل آمونیوم برومید و سدیم دودسیل سولفات سنتز شدند. در همه موارد، ترکیب شیمیایی، شناسایی پودر، مورفولوژی و اندازه ذرات محصول نهایی توسط اسپکتروسکوپی مادون قرمز تبدیل فوریه (FTIR) ، پراش اشعه ایکس (XRD)، میکروسکوپ الکترونی روبشی (FESEM) ، آنالیز عنصری EDX و طیف سنجی UV-Vis شناسایی شدند. فعالیت فوتوکاتالیستی نانوذرات برای تخریب آلاینده های آلی (رنگدانه کنگورد) بررسی شد. آزمایش های حذف کنگورد به عنوان یک آلاینده آلی آب، فعالیت فوتوکاتالیستی و توانایی جذب سطحی اکسیدهای روی سنتز شده را نشان می دهد. سرانجام ، مقایسه نتایج حذف رنگ نشان داد که نانوذره میله ای دارای راندمان بیشتری در تخریب کنگورد با بازده 97٪ در طی 2 ساعت در pH = 8 می باشد.

Keywords [فارسی]

  • نانو ذره
  • اکسید روی
  • جذب سطحی
  • کنگورد
  • فوتوکاتالیست
[1] N. S. Lewis, “Research opportunities to advance solar energy utilization.” Science, 351 (2016) 1920.
[2] A. Eslami, S. Nasseri, B. Yadollahi, A. Mesdaghinia, F. Vaezi, et al. “Enhanced ozonation of dichloroacetic acid in aqueous solution using nanometer ZnO powders” Journal Chemical and Technology Biotechnology, 83 (2008) 1447.
[3] N. Laouedj, A. Bekka, B. Elaziouti, et al. “ZnO-Assisted Photocatalytic Degradation of Congo Red and Benzopurpurine 4B in Aqueous Solution” Journal of Chemical Engineering & Process Technology, 2 (2011) 2.
[4] C.I. Pearce, J.R. Lloyd, J.T. Guthrie, “The removal of colour from textile wastewater using whole bacterial cells: a review.” Dyes and Pigments, 58 (2003) 179.
[5] T. Robinson, G. Mcmullan, R. Marchant, P. Nigam, “Remediation of dyes in textile effluent: a critical review on current treatment technologies with a
proposed alternative.” Bioresourse Technology, 77 (2001) 247.
[6] Y.H. Leung, A.M. Ching. “Strategies for improving the efficiency of semiconductor metal oxide photocatalysis.” Materials Horizons, 1 (2014) 400.
[7] M. Miyauchi, A. Nakajima, T. Watanabe, K. Hashimoto, “Photocatalysis and Photoinduced Hydrophilicity of Various Metal Oxide Thin Films.” Chemistry of Materials, 14 (2002) 2812.
[8] A. Ravanbakhsh, F. Rashchi, M. Heydarzadeh Sohi, R. Khayyam Nekouei, M. Mortazavi Samarin “Synthesis and characterization of porous zinc oxide nano-flakes film in alkaline media.” Journal of Ultrafine Grained and Nanostructured Materials, 51 (2018) 32.
[9] S. Merouani, O. Hamdaoui, F. Saoudi, M.S. Chiha, “Sonochemical degradation of Rhodamine B in aqueous phase: Effects of additives.” Chemical Engineering Journal, 158 (2010) 550.
[10] V. Kandavelu, H. Kastien, K.R. Thampi, “Photocatalytic degradation of isothiazolin-3-ones in water and emulsion paints containing nanocrystalline TiO2 and ZnO catalysts” Applied Catalysis B: Environmental, 48 (2004) 101.
[11] A. Abdel Aal, S.A. Mahmoud, A.K. Aboul-Gheit, “Sol–Gel and Thermally Evaporated Nanostructured Thin ZnO Films for Photocatalytic Degradation of Trichlorophenol.” Nanoscale Research Letters. 4 (2009) 627.
[12] B. Neppolian, S. Sakthivel, B. Arabindoo, M. Palanicham, V. Murugesan, “Degradation of textile dye by solar light using TiO2 and ZnO photocatalysts.” Journal of Environmental Science and Health, Part A. 34 (1999) 1829.
[13] I. Udom, M.K. Ram, E.K. Stefanakos, A.F. Hepp, D.Y. Goswami, “one dimential ZnO nanostructures.” Material Science in Semiconductor Processing, 16 (2013) 2070.
[14] N. Smirnova, Y. Gnatyuk, A. Eremenko, G. Kolbasov, V. Vorobetz, I. Kolbasova, O. Linyucheva, “Photoelectrochemical and photocatalytic properties of mesoporous TiO2 films modified with silver and gold nanoparticles.” International Journal of Photoenergy, 1 (2006) 1205.
[15] M. Bagheri, A.R. Mahjoub, B. Mehri, “Enhanced photocatalytic degradation of congo red by solvothermally synthesized CuInSe2–ZnO nanocomposites.” RSC Advances, 4 (2014) 21757.
[16] Y. Li, W. Xie, X. Hu, G. Shen, X. Zhou, Y. Xiang, et al. “Comparison of Dye Photodegradation and its Coupling with Light-to-Electricity Conversion over TiO2 and ZnO.” Langmuir, 26 (2010) 591.
[17] P.E. de Jongh, E.A. Meulenkamp, D. Vanmaekelbergh, J.J. Kelly, “Charge Carrier Dynamics in Illuminated, Particulate ZnO Electrodes.” The Journal of Physical Chemistry B, 104 (2000) 7686.
[18] Y. Cui, C.M. Lieber, “Functional nanoscale electronic devices assembled using nanowire blocks.” Science. 29 (2001) 851.
[19] P. Sukanta, S. Mondal, J. Maity, R. Mukherjee, “Synthesis and Characterization of ZnO Nanoparticles using Moringa Oleifera Leaf Extract: Investigation of Photocatalytic Activity.” International Journal of Nanoscience and Nanotechnology, 14 (2018) 111.
[20] R. Ramakrishnan, S. Kalaivani, J. Amala Infant Joice, T. Sivakumar, “Photocatalytic activity of multielement doped TiO2 in the degradation of congo red.” Applied Surface Science, 258 (2012) 2515.
[21] S. Aghabeygi, Z. Sharifi, N. Molahasani, “Enhanced photocatalytic property of nano-ZrO2-SnO2 NPs for photodegradation of an azo dye.” Digest Journal of Nanomaterials and Biostructures, 12 (2017) 1.
[22] H. Usui. “The effect of surfactants on the morphology and optical properties of precipitated wurtzite ZnO.” Materials Letters, 63(2009) 1489.
[23] S. Lv, C. Wang, T. Zhou, S. Jing, Y. Wu, C. Zhao, “In situ synthesis of ZnO nanostructures on a zinc substrate assisted with mixed cationic/anionic surfactants.” Journal of Alloys Compounds, 477 (2009) 364.
[24] Y. Ni, G. Wu, X. Zhang, X. Cao, G. Hu, A. Tao, Z. Yang, X. Wei, “Hydrothermal preparation, characterization and property research of flowerlike ZnO nanocrystals built up by nanoflakes.” Materials Research Bulliten, 43 (2008) 2919.
[25] U.N. Maiti, S. Nandy, S. Karan, B. Mallik, K.K. Chattopadhyay, “Enhanced optical and field emission properties of CTAB-assisted hydrothermal grown ZnO nanorods.” Applied Surface Science, 254 (2008) 7266.
[26] S. Aghdasi, M. Shokri, “Photocatalytic degradation of ciprofloxacin in the presence of synthesized ZnO nanocatalyst: The effect of operational parameters.” Iranian Journal of Catalysis, 6 (2016) 481.
[27] E.M.P. Steinmiller, K.S. Choi, “Anodic Construction of Lamellar Structured ZnO Films Using Basic Media via Interfacial Surfactant Templating.” Langmuir, 23 (2007) 12710.
[28] K. Zare, N. Molahasani, N. Farhadyar, M.S. Sadjadi, “Enhanced Blue Green Emission of ZnO Nanorods Grown byHydrothermal Method.” Journal of Nano Research, 21 (2013) 43.
[29] A.J.M. de Man, B.W.H. van Beest, M. Leslie, R.A. van Santen, “Lattice dynamics of zeolitic silica polymorphs.” Journal of Physical Chemistry, 94 (1999) 2524.
[30] M.S. Sadjadi, A. Azimi, K. Zare, “Synthesis and Characterization of ZnO nanorods by Acrylamide Gel Method (AGM).” The Research Journal of Chemistry and Environment, 15 (2011) 856.
[31] M.S. Sadjadi, N. Farhadyar, K. Zare “Synthesis of ZnS/SiO2 Core-Shell by Sol-Gel Process and Covering then with Gold Nanoparticle and Study of its Photoluminescence Properties.” Defect and Diffusion Forum, 1 (2012) 238.
[32] P. Rainho, J. Rocha, L.D. Carlos, R.M. Almeida, “Nuclear-Magnetic-Resonance and Vibrational Spectroscopy Studies of SiO2-TiO2 Powders Prepared by the Sol-Gel Process.” Journal of Materials Research, 16 (2001) 2369.
[33] S.H. Ehrman, S.K. Friedlander, and M.R. Zachariah, “Phase segregation in binary SiO2/TiO2 and SiO2/Fe2O3 nanoparticle aerosols formed in a premixed flame.” Journal of Materials Research, 14(1999) 4551.
[34] M.K. Debanath, S. Karmakar, “Biogenic ZnO nanoparticles: a study of blueshift of optical band gap and photocatalytic degradation of reactive yellow 186 dye under direct sunlight.” Materials Letters, 111 (2013) 116.
[35] J. Talat- Mehrabada, M. Partovib, F. Arjomandi Rada, R. Khalilnezhad, “Nitrogen doped TiO2 for efficient visible light photocatalytic dye degradation.” Iranian Journal of Catalysis, 9 (2019) 233.
[36] H.R. Pouretedal, M. Fallahgar, F. Sotoudeh Pourhasan,M. Nasiri, “Taguchi optimization of photodegradation of yellow water of trinitrotoluene production catalyzed by nanoparticles TiO2/N under visible light.” Iranian Journal of Catalysis, 7 (2017) 317.
[37] F. Soori, A. Nezamzadeh-Ejhieh, “Photodegradation and antibacterial properties of zeolite cerium oxide nanocomposite.” Journal of Molecular Liquids, 255 (2018) 250.
[38] B. Swarnalatha, Y. Anjaneyulu “Studies on the heterogeneous photocatalytic oxidation of 2,6-dinitrophenol in aqueous TiO2 suspension.” Journal of Molecular Catalysis A: Chemistry, 223 (2004) 161.
[39] C.E. Bonancea, G.M. Do Nascimento, M.L. De Souza, M.L.A. Temperini, P. Corio “ Photodegradation of Congo red in aqueous solution on ZnO as an alternative catalyst to TiO2.” Applied Catalysis B: Environmental, 69 (2006) 3.