DFT study of Benzene, Coronene and Circumcoronene as zigzag graphene quantum dots

Document Type : Original Article


1 Solid State Department, Physics Faculty, K. N. Toosi University of Technology

2 Power and Electronics Faculty, Farabi University of Science and Technology


Theoretically, graphene quantum dot (GQD) has proved to feature in several
important applications during recent decades. Generally, quantum dot, which is
of nano-scale size is comparable to the size of atoms and molecules, having
different properties from the bulk of the same materials. In Nano scales, the
electrical, optical, thermodynamic, and mechanical properties of samples are
directly related to the number of atoms constituting the sample, regarding size
and shape (type of edge, forms, and dimensions). In this paper three different
structures of GQDs with zigzag edges (Benzene, Coronene, and
Circumcoronene) have been considered and simulated using the DFT theory by
applying PBE functional in order to extract the thermal energy, electronic
energy, heat capacity, polarizability, and entropy of each structure. The
modification of each property with respect to the number of atoms in the GQD
are investigated, linear and nonlinear variations of these properties with respect
to the atom number are observed. Comparative study of Raman spectroscopy
between PBE and B3LYP functionals is studied for each size of the considered
GQDs. Also, revolution of the G peak in each case has been separately
investigated. All calculations are done by using the Gaussian 09W software
package based on 3-21G Gaussian basis sets.


Article Title [Persian]

مطالعه بنزن ، کرونن و سیرکومکرونن به عنوان نقاط کوانتومی گرافن، از دیدگاه نظریه تابعی چگالی

Authors [Persian]

  • حامد اسدی 1
  • کاظم ژور 1
  • حامد زوار تربتی 2

1 گروه حالت جامد، دانشکده فیزیک، دانشگاه صنعتی خواجه نصیر الدین طوسی

2 گروه قدرت و الکترونیک، دانشگاه علوم و فنون فارابی

Abstract [Persian]

در دهه های اخیر، چندین کاربرد مهم و متفاوت از دیدگاه نظری برای  نقاط کوانتومی گرافن (GQD) به اثبات رسیده است. به طور کلی ، نقطه کوانتومی که در ابعاد نانو است ، با اندازه اتم ها و مولکول ها قابل مقایسه است و دارای خواص متفاوت از مواد بالک یکسان است. در مقیاس نانو ، خصوصیات الکتریکی ، نوری ، ترمودینامیکی و مکانیکی نمونه ها از نظر اندازه و شکل (نوع لبه ، فرم ها و ابعاد) با تعداد اتم های تشکیل دهنده نمونه ارتباط مستقیم دارد. در این مقاله سه ساختار مختلف GQD با لبه های زیگزاگ (بنزن ، کرونن و سیرکوموکرونن) با استفاده از تابعیت PBE به منظور استخراج انرژی گرمایی ، انرژی الکترونیکی ، ظرفیت گرما ، قطبش پذیری و آنتروپی با استفاده از نظریه تابعی چگالی (DFT) در نظر گرفته و شبیه سازی شده است. در هر ساختار،  بهبود هر خاصیت با توجه به تعداد اتمها در GQD بررسی شده است ، تغییرات خطی و غیرخطی این خصوصیات با توجه به تعداد اتم ملاحظه می شود. مطالعه مقایسه ای طیف سنجی رامان بین تابعیت های  PBE و B3LYP برای هر یک از ابعاد مورد نظر از GQDs در نظر گرفته شده است. همچنین ، تشکیل قله G در هر مورد به طور جداگانه بررسی شده است. تمام محاسبات با استفاده از بسته نرم افزاری Gaussian 09W بر اساس مجموعه های پایه 3-21 G  گوسین انجام می شود.

Keywords [Persian]

  • نظریه تابعی چگالی
  • نقاط کوانتومی
  • گرافن
  • طیف سنجی رامان
  • بنزن
  • کرونن
  • سیرکومکرونن
[1] Antonio H. Neto, Castro. "The carbon new age." Materials Today, 13 (2010) 12.
[2] S. Ahn et al. "Emerging analysis on the preparation and application of graphene by bibliometry." Journal of Material Sciences & Engineering, 4 (2015) 2169.
[3] Matthew J. Allen, Vincent C. Tung, and Richard B. Kaner. "Honeycomb carbon: a review of graphene." Chemical Reviews, 110 (2010) 132.
[4] Z. Jin et al., "Graphene, graphene quantum dots and their applications in optoelectronics." Current Opinion in Colloid & Interface Science, 20 (2015) 439.
[5] Y. Kobayashi et al., "Observation of zigzag and armchair edges of graphite using scanning tunneling microscopy and spectroscopy." Physical Review B, 71 (2005) 193406.
[6] M. Pykal et al., "Modelling of graphene functionalization." Physical Chemistry Chemical Physics, 18 (2016) 6351.
[7] J. Granatier et al. "The nature of the binding of Au, Ag, and Pd to benzene, coronene, and graphene: from benchmark CCSD (T) calculations to plane-wave DFT calculations." Journal of Chemical Theory and Computation, 7 (2011) 3743.
[8] Paulo V.C. Medeiros, Gueorgui Kostov Gueorguiev, and Sven Stafström. "Benzene, coronene, and circumcoronene adsorbed on gold, and a gold cluster adsorbed on graphene: Structural and electronic properties." Physical Review B, 85 (2012) 205423.
[9] M. Malček and M. Natalia DS Cordeiro. "A DFT and QTAIM study of the adsorption of organic molecules over the copper-doped coronene and circumcoronene." Physica E: Low-dimensional Systems and Nanostructures, 95(2018) 59.
[10] Jennifer L. Weisman et al. "Time-dependent density functional theory calculations of large compact polycyclic aromatic hydrocarbon cations: implications for the diffuse interstellar bands." The Astrophysical Journal, 587 (2003) 256.
[11] E.M. Huff and P. Pulay. "A potential surface for the interaction between water and coronene as a model for a hydrophobic surface." Molecular Physics, 107(2009) 1197.
[12] J.P. Perdew, B. Kieron, and M. Ernzerhof. "Generalized gradient approximation made simple." Physical Review Letters, 77 (1996) 3865.
[13] John P. Perdew, "Density-functional approximation for the correlation energy of the inhomogeneous electron gas." Physical Review B, 33 (1986) 8822.
[14] Becke, Axel D. "Density-functional exchange-energy approximation with correct asymptotic behavior." Physical review A, 38 (1988) 3098.
[15] M. J. E. A. Frisch et al. "Gaussian ∼09 Revision D. 01." (2014).
[16] M. Singh, S. Lara, and S. Tlali. "Effects of size and shape on the specific heat, melting entropy and enthalpy of nanomaterials." Journal of Taibah University for Science, 11 (2017) 922.
[17] J. G. Dash "History of the search for continuous melting." Reviews of Modern Physics, 71 (1999) 1737.
[18] Zhu, Y. F., J. S. Lian, and Q. Jiang. "Modeling of the melting point, Debye temperature, thermal expansion coefficient, and the specific heat of nanostructured materials." The Journal of Physical Chemistry C, 113 (2009) 16896.
[19] James H. Rose, John Ferrante, and John R. Smith. "Universal binding energy curves for metals and bimetallic interfaces." Physical Review Letters, 47 (1981) 675.
[20] L. Dongwook et al. "Quantum confinement-induced tunable exciton states in graphene oxide." Scientific Reports, 3 (2013) 2250.
[21] G. Compagnini et al. "Ion beam induced defects in graphene: Raman spectroscopy and DFT calculations." Journal of Molecular Structure, 993 (2011) 506.
[22] C. Thomsen, M. Machón, and S. Bahrs. "Raman spectra and DFT calculations of the vibrational modes of hexahelicene." Solid state communications, 150 (2010) 628.
[23] M. W. Smith et al. "Structural analysis of char by Raman spectroscopy: Improving band assignments through computational calculations from first principles." Carbon, 100 (2016) 678.
[24] F. Tuinstra and J. Lo Koenig. "Raman spectrum of graphite." The Journal of Chemical Physics, 53 (1970) 1126.
[25] Andrea C. Ferrari et al. "Raman spectrum of graphene and graphene layers." Physical Review Letters, 97 (2006) 187401.
[26] R. P. Vidano et al. "Observation of Raman band shifting with excitation wavelength for carbons and graphites." Solid State Communications, 39 (1981) 341.
[27] N.S.R., N.C.W. (2017) Standard Reference Data Act.