Effects of hydrostatic pressure and temperature on the AlGaN/GaN high electron mobility transistors

Document Type : Original Article

Author

Department of Physics, Khoy Branch, Islamic Azad University, Khoy, Iran

Abstract

In this paper, drain-source current, transconductance and cutoff frequency in AlGaN/GaN high electron mobility transistors have been investigated. In order to obtain parameters of exact AlGaN/GaN high electron mobility transistors such as electron density, the wave function, band gap, polarization charge, effective mass and dielectric constant, the hydrostatic pressure and temperature effects are taken into account. It has been found that the drain-source current decreases with increasing temperature and increases with increasing hydrostatic pressure. The increase in temperature is equivalent to a negative virtual gate and an increase in the hydrostatic pressure equivalent to the positive virtual gate voltage. Moreover, the temperature and hydrostatic pressure effective mass dependence in high electron mobility transistor structures are investigated, and it is observed that the increase of hydrostatic pressure decreases the effective mass and the wave function penetrated to the quantum barrier AlGaN. In general, the process of increasing and decreasing the cutoff frequency and transconductance is similar to the variations in the drain-source current. The calculated results are in good agreement with existing experimental data.

Keywords

Article Title [Persian]

تاثیر فشار و دما بر ترانزیستورهای اثر میدان با تحرک بالای الکترونی AlGaN/GaN

Author [Persian]

  • رجب یحیی زاده صدقیانی

گروه فیزیک، دانشگاه آزاد اسلامی، واحد خوی، خوی، ایران

Abstract [Persian]

در این مقاله، جریان درین- سورس، رسانندگی متقابل و فرکانس قطع در ترانزیستورهای با تحرک پذیری بالای الکترونی AlGaN/GaN مورد بررسی قرار گرفته است. برای به دست آوردن دقیق پارامترهای ترانزیستورهای با تحرک بالای الکترونی (همت) AlGaN/GaN  مانند چگالی الکترون، عملکرد موج، گاف نواری، قطبش پذیری، جرم موثر و ثابت دی الکتریک؛ اثرات فشار هیدرواستاتیک و دما مورد بررسی قرار می گیرند. نتایج حاصله نشانگر این است که جریان درین-سورس با افزایش دمای کاهش می یابد و با افزایش فشار هیدرواستاتیکی افزایش می یابد. افزایش دما معادل یک گیت مجازی منفی و افزایش فشار هیدرواستاتیک برابر با ولتاژ گیت مجازی مثبت است. همچنین در ساختارهای HEMT وابستگی جرم مؤثر به دما و فشار هیدرواستاتیک بررسی شده است و مشاهده می شود که افزایش فشار هیدرواستاتیک جرم موثر و نفوذ تابع موج را به سد کوانتمی AlGaN کاهش می دهد. به طور کلی، فرایند افزایش و کاهش فرکانس قطع و رسانندگی متقابل مشابه تغییرات در جریان درین- سورس است. نتایج محاسبه شده با داده های تجربی موجود تطابق خوبی دارند.

Keywords [Persian]

  • دما
  • فشار
  • جرم موثر
  • AlGaN/GaN HEMTs
  • فرکانس قطع
[1] L. Rey, A. D. Latorre, F. F. M. Sabatti, J. D. Albrecht, and M. Sa. Lraniti, “Hot electron generation under large-signal radio frequency operation of GaN high-electron-mobility transistors.” Applied Physics Letters, 111 (2017) 013506.
[2] J. Ma, E. Matioli, “Slanted tri-gates for high-voltage GaN power devices.” IEEE Electron Device Letters, 38b (2017) 1305.
[3] G. Tang, et al., “Digital integrated circuits on an E-mode GaN power HEMT platform.” IEEE Electron Device Letters, 38 (2017) 1282.
[4] M. Blaho, et al., “Annealing temperature, and bias-induced threshold voltage instabilities in integrated E/D-mode InAlN/GaN MOS HEMTs.” Applied Physics Letters, 111 (2017) 033506.
[5] K. Zhang, et al., “High-Linearity AlGaN/GaN FinFETs for Microwave Power Applications.” IEEE Electron Device Letters, 38 (2017) 615.
[6] H. Chiu, et al., “RF Performance of in Situ SiNx Gate Dielectric AlGaN/GaN MISHEMT on 6-in Silicon-On-Insulator Substrate.” IEEE Transactions on Electron Devices, 64 (2017) 4065.
[7] S. Sun, et al., “AlGaN/GaN metal-insulator-semiconductor high electron mobility transistors with reduced leakage current and enhanced breakdown voltage using aluminum ion implantation.” Applied Physics Letters, 108 (2016) 013507.
[8] Z. Zhang, Q. Liao, Y. Yu, X. Wang, and Y. Zhang, “Enhanced photo response of ZnO Nano rods-based self-powered photo detector by piezotronic interface engineering.” Nano Energy, 9 (2014) 237.
[9] S. Yuan, B. Duan, X. Yuan, Z. Cao, H. Guo, and Y. Yang, “New Al0.25Ga0.75N/GaN high electron mobility transistor with partial etched AlGaN layer.” Superlattices and Microstructures, 93 (2016) 303.
[10] Y. Chang, Y. Zhang, Y. Zhang, “Thermal model for static current characteristics of AlGaN/GaN high electron mobility transistors including self-heating effect.” Journal of Applied Physics, 99 (2006) 044501.
[11] R. Yahyazadeh, A. Asgari, and M. Kalafi, “Effect of depletion layer on negative differential conductivity in AlGaN/GaN high electron mobility transistor.” Physica E, 33 (2006) 77.
[12] Rashmi, A. Kranti, S. Haldar, M. G. Gupta, et al., “Comprehensive analysis of small-signal parameters of fully strained and partially relaxed high Al-content lattice mismatched AlmGa1-mN/GaN HEMTs.” IEEE Trans on Microwave Theory Techniques, 52 (2003) 607.
[13] P. Cui, et al., “Influence of different gate biases and gate lengths on parasitic source access resistance in AlGaN/GaN heterostructure FETs.” IEEE Transactions on Electron Devices, 64 (2017) 1038.
[14] I. Vurgaftman, J. R Meyer, L. R. R Mohan, “Band parameters for III–V compound semiconductors and their alloys.” Journal of Applied Physics, 89 (2001) 5815.
[15] K. J. Bala, A. J Peter, and C. W Lee, “Simultaneous effects of pressure and temperature on the optical transition energies in a Ga0.7In0.3N/GaN quantum ring.” Chemical Physics, 495 (2017) 42.
[16] N. E. Christensen, I. Gorczyca. “Optical and structural properties of III-V nitrides under pressure.” Physical Review B, 50 (1994) 4397.
[17] Z. Dridi, B. Bouhafs, Ruterana. “Pressure dependence of energy band gaps for AlxGa1−xN, InxGa1−xN and InxAl1−xN.” New Journal of Physics, (2002) 94.1.
[18] O. Ambacher , A. B Foutz, J Smart, J. R. Shealy, N. G. Weimann, K. Chu et al., “Two dimensional electron gases induced by spontaneous and piezoelectric polarization in undoped and doped AlGaN/GaN heterostructures.” Journal of Applied Physics, 87 (2000) 334.
[19] O. Ambacher, J. Majewski, C. Miskys, et al., “Pyroelectric properties of Al (In) GaN/GaN hetero- and quantum well structures.” Journal of Physics: Condensed Matter, 14 (2002) 3399.
[20] Z. J. Feng, Z. J. Cheng, and H. Yue. “Temperature dependence of Hall electron density of GaN-based heterostructures.” Chinese Physics, 13 (2004) 1334.
[21] V. Fiorentini, F. Bernardini, O. Ambacher, “Evidence for nonlinear macroscopic polarization in III–V nitride alloy Heterostructures.” Applied Physics Letters, 80 (2002) 1204.
[22] P. Perlin, L. Mattos, N. A. Shapiro, J. Kruger, W. S. Wong, T. Sands, N. W. Cheung, and E. R. Weber, “Reduction of the energy gap pressure coefficient of GaN due to the constraining presence of the sapphire substrate.” Journal of Applied Physics, 85 (1999) 2385.
[23] K. Elibol, G. Atmaca, P. Tasli, and S. B. Lisesivdin, “A numerical study on subband of InxAl1-xN/InN-based HEMT structure with low-indum (x / < 0.01) barrier layer.” Solid state communication, 162 (2013) 8.
[24] R. Yahyazadeh, Analytical-numerical model for sheet resistance of  AlxGa1-XN/GaN high electron mobility transistors, Journal of Non-Oxide Glasses, 10 (2018) 57.
[25] P. Roblin, H. Rahdin, “High-speed Heterostructure Devices from Device Concepts to Circuit Modeling.” Cambridge University Press, Cambridge (2002) 277.
[26] A. Agrawal, M .Gupta, R. S. Gupta, “RF performance assessment of AlGaN/GaN MISHFET at high temperatures for improved power and pinch‐off characteristics.” Microwave and Optical Technology Letters, 51 (2009) 1942.
[27] C. M. Duque, A. L. Morales, M. E. Mora-Ramos, and C. A. Duque, “Exciton-related optical properties in zinc-blende GaN/InGaN quantum wells under hydrostatic pressure.” Physica Status Solidi (b), 252 (2015) 670.
[28] M. Yang et al., “Effect of polarization coulomb field scattering on parasitic source access resistance and extrinsic transconductance in AlGaN/GaN heterostructure FETs.” IEEE Transactions Electron Devices, 63 (2016) 1471.
[29] L. Hsu, W. Walukiewicz, “Effect of polarization fields on transport properties in AlGaN/GaN heterostructures.” Journal of Applied Physics, 89 (2001) 1783.
[30] H. Yu, K. F. Brennan, “Theoretical study of the two-dimensional electron mobility in strained III-nitride heterostructures.” Journal of Applied Physics, 89 (2001) 3827.
[31] R. Yahyazadeh, “Effect of Temperature on the Total Mobility of AlGaN/GaN High Electron Mobility Transistors.” ECS Transactions, 60 (2014) 1051.
[32] L. Yang et al., “Enhanced gm and fT with High Johnson’s Figure-of-Merit in Tin Barrier AlGaN/GaN HEMTs by TiN-Based Source Contact Ledge.” IEEE Electron Device Letters, 38 (2017) 1563.
[33] A. Asgari, M. Kalafi, and L. Faraone, “Effects of partially occupied sub-bands on two-dimensional AlxGa1−xN/GaN Heterostructures.” Journal of Applied Physics, 95 (2004) 1185.
[34] T. Palacios, et al., “Influence of the dynamic access resistance in the gm and ft. linearity of AlGaN/GaN HEMTs.” IEEE Transactions on Electron Devices, 52 (2005) 2117.
[35] M. Yang et al., “Effect of polarization coulomb field scattering on parasitic source access resistance and extrinsic transconductance in AlGaN/GaN heterostructure FETs.” IEEE Transactions on Electron Devices, 63 (2016) 1471.
[36] Y. Chang, Y. Zhang, and Yu. Zhang. “A thermal model for static current characteristics of AlGaN/GaN high electron mobility transistors including self-heating effect.” Journal of Applied Physics, 99 (2006) 044501.
[37] J. C. Freeman, Channel temperature model for microwave AlGaN/GaN power HEMTs on SiC and sapphire, IEEE MTT-S International Microwave Symposium Digest, 3 (2004) 2031.
[38] C. Anghel, A. M. Lonescu, N. Hefyene, R. Gillon, European Solid-State Device Research, 33rd Conference on. ESSDERC ‘03, (2003) 449.
[39] W. Jin, W. Liu, S. K. H. Fung, P. C. H. Chan, and C. Hu, “SOI thermal impedance extraction methodology and its significance for circuit simulation.” IEEE Transactions on Electron Devices, 48 (2001) 730.
[40] T. H. Yu, K. F. Brennan, “Theoretical study of a GaN-AlGaN high electron mobility transistor including a nonlinear polarization model.” IEEE Transactions on Electron Devices, 50 (2003) 315.
[41] Y. F. Wu, S. Keller, P. Kozodoy, B. P. Keller, P. Parikh, D. Kapolnek,S. P. Denbaars, and U. K. Mishra, “Bias Dependent Microwave Performance of AlGaN/GaN MODFET’s Up To 100 V.” IEEE Electron Device Letters, 18 (1997) 290.
[42] S. Turuvekere, et al., “Gate leakage mechanisms in AlGaN/GaN and AlInN/GaN HEMTs: Comparison an modeling” IEEE Transactions on Electron Devices, 60 (2013) 3157.