Three-dimensional calculations of the magnetic fields in a finite superconducting hollow cylinder in an applied axial magnetic field

Document Type : Original Article

Author

Department of Physics, Faculty of Science, University of Qom, Qom 3716146611, Iran

Abstract

In this study, a set of self-consistent coupled-integral equations for the local magnetic flux and current distributions in a finite superconducting hollow cylinder under an axial magnetic field has been directly derived by using the Biot-Savart law within the framework of the critical-state model. The equations were first solved numerically in the three-dimensional space before obtaining the hysteresis loops for the Kim and Exponential models. We have assumed the contribution of the flux penetration from the inner surface of the sample to be higher than that of other surfaces. It is found that the variation in the area of lateral surface changes the magnitude of the magnetic moment of the finite hollow cylinder in the applied magnetic field. The obtained results are in good agreement with calculates. The formalism presented here can be used for an arbitrary shape of the superconducting system in the presence of any magnetic field dependence of the critical current density Jc(B) in an external magnetic field of arbitrary direction.

Keywords

Article Title [Persian]

محاسبات سه بعدی چگالی میدان مغناطیسی استوانه ی محدود تو خالی ابررسانا در یک میدان مغناطیسی محوری

Author [Persian]

  • بتول محمدزاده ده سرخ

گروه فیزیک، دانشکده علوم، دانشگاه قم، قم، ایران

Abstract [Persian]

در این مطالعه یک دسته معادلات خود سازگار برای چگالی شار مغناطیسی و توزیع جریان در یک پوسته ی ابررسانا در میدان مغناطیسی موازی با محور استوانه از قانون بیوساوار به دست آمده است. این معادلات به روش عددی حل شده اند. چگالی جریان نفوذی در ابررسانا بر اساس نظریه های Kim و نمایی فرض شده است. نتایج با مقالات دیگران مقایسه و بحث شده است.

Keywords [Persian]

  • ابررسانایی
  • استوانه تو خالی
  • میدان مغناطیسی
  • مدل حالت بحرانی
[1] H. H. Qi, P. L. Lang, M. J. Zhang, T. S. Wang, D. N. Zheng and Y. J. Tian, "High-Tc dc-SQUID magnetometer and its application in eddy current nondestructive evaluation", Cryogenics 44 (2004) 695.
[2] D. Winkler, "Superconducting analogue electronics for research and industry", Superconductivity Science and Technology 16 (2003) 1583.
[3] H. Altenburg, J. Plewa, W. Jaszczuk, M. Itoh, I. Brunets, A. Buev, and T. Vilics, "Superconducting materials for electronic applications", Physica C: Superconductivity 1046 (2002) 372.
[4] S. H. Lee, J. S. Jeong, K. T. Jung, J. P. Hong, and Y. S. Jo, "Advanced 3-Dimensional Magnetic Field Analysis of Superconducting Machines Using Analytical Method", IEEE Transactions on Applied Superconductivity 23 (2013) 4900704.
[5] T. Matsushita, "Current high-temperature superconducting coils and applications in Japan", Superconductivity Science and Technology 13 (2000) 51.
[6] D. Hechtfischer, "Generation of homogeneous magnetic fields within closed superconductive shields", Cryogenics 27 (1987) 503.
[7] L. Rossi, "Superconductivity: its role, its success and its setbacks in the Large Hadron Collider of CERN", Superconductivity Science and Technology 23 (2010) 034001.
[8] P. Tixador, X. Obradors, R. Tournier, T. Puig, D. Bourgault, X. Granados, J. M. Duval, E. endoza, X. Chaud, E. Varesi, E. Beaugnon, and D. Isfort, "Quench in bulk HTS materials-application to the fault current limiter", Superconductivity Science and Technology 13(2000) 493.
[9] J. Leveque and A. Rezzoug, "A new kind of superconducting current limiter", Superconductivity Science and Technology 15 (2002) 630.
[10] N. Christofield, D. N. Sobieski, J. C. Erker, S. May, and M. P. Augustine, "A single coil radio frequency gradient probe for nuclear magneticresonance applications", Review of Scientific Instruments 83 (2012) 124701.
[11] Ch P. Poole, J. Horacio, A. F. Richard, J. Creswick, and R. Prozorov, "superconductivity", Netherlands : Academic Press (2007).
[12] P. N. Mikheenko and Yu E. Kuzovlev, "Inductance measurements of HTSC films with high critical currents", Physica C: Superconductivity 204 (1993) 229.
[13] C. P. Bean, "Magnetization of hard superconductors", Physical Review Letters 8 (1962) 250.
[14] Y. B. Kim, C. F. Hempstead, and A. R. Strnad, "Critical persistent currents in hard superconductors", Physical Review Letters 9 (1962) 306.
[15] D. X. Chen and A. Sanchez, "Magnetic properties of High-Tc superconducting grains", Physical Review B 45 (1992) 10793.
[16] E. H. Brandt, "Susceptibility of superconductor disks and rings with and without flux creep", Physical. Review B 55 (1997) 14513.
[17] E Zeldov, J R Clem, M McElfresh and M Darwin, "Magnetization and transport currents in thin superconducting films", Physical Review B 49 (1994) 9802.
[18] A. Klein and A. Godunov, "Introductory computational physics", Cambridge: University Press, (2006).
[19] J. Zhu, J. Mester, J. Lockhart, and J. Turneaure, "Critical states in 2D disk-shaped type-II superconductord in periodic external magnetic field", Physica C: Superconductivity 212 (1993) 216.
[20] D. V. Shantsev, Y. M. Galperin, and T. H. Johansen, "Thin superconducting disk with field-dependent critical current: Magnetization and ac susceptibilities", Physical Review B 61 (2000) 9699.
[21] R. Navarro and L. J. Campbell, "Magnetic-fiux profiles of high-T, superconducting granules: Three-dimensional critical-state-model approximation", Physical Review B 44 (1991) 10146.
[22] T. H. Johansen and H. Bratsberg, "Critical-state magnetization of type-11 superconductors in rectangular slab and cylinder geometries", Journal of Applied Physics 77 (1995) 3945.
[23] M. W. Coffey, "Pancake vortex in a superconducting cylinder", Physical Review B 51 (1995) 15600.
[24] E. H. Brandt, "Superconductor disks and cylinders in an axial magnetic field: I. Flux penetration and magnetization curves", Physical Review B 58(1997) 6506.
[25] E. H. Brandt, "Superconductor disks and cylinders in an axial magnetic field: II. Nonlinear and linear ac susceptibilities", Physical Review B 58 (1997) 6523.
[26] A. A. B. Brojeny and J. R. Clem, "Magnetization of a current-carrying superconducting Corbino disk", Physical Review B 64 (2001) 184507.
[27] J. McDonald, J. R. Clem, and D. E. Oates, "Critical-state model for harmonic generation in a superconducting microwave resonator", Physical Review B 55 (1997) 11823.
[28] J. R. Clem, "Theory of flux cutting and flux transport at the critical current of a type-II superconducting cylindrical wire", Physical Review B 83 (2011) 214511.
[29] R. D. Luca, "Positive Field-Cooled Susceptibility in Multiply Connected Type-I Superconductors", Journal of Modern Physics 4 (2013) 5.
[30] F. M. A. Moreira, C. Navau, and A. Sanchez, "Meissner state in finite superconducting cylinders with uniform applied magnetics field", Physical Review B 61 (2000) 634.
[31] A. Sanchez and C. Navau, "Magnetic properties of finite superconducting cylinders. I. Uniform applied field", Physical Review B 64 (2001) 214506.
[32] D. H. Douglass, "Properties of a Thin Hollow Superconducting Cylinder", Physical Review 132 (1963) 513.
[33] R. M. Arutyunyan, V. L. Ginzburg, and G. F. Zharkov, "Magnetic vortices and thermoelectric effect in a hollow superconducting cylinder", JETP 84 (1997) 1186.
[34] R. M. Arutunian and G. F. Zharkov, "Behavior of a Hollow Superconducting Cylinder in a Magnetic Field", Journal of Low Temperature Physics 52 (1983) 409.
[35] M Masale, N C Constantinou and D R Tilley, "The critical field of a hollow type-II superconducting cylinder", Superconductivity Science and Technology 8 (1993) 287.
[36] S V Yampolskii, F M Peeters, B J Baelus and H J Fink, "Effective radius of superconducting rings and hollow cylinders", Physical Review B 64 (2001) 3945.
[37] G. P. Lousberg, M. Ausloos, Ch Geuzaine, P. Dular, Ph Vanderbemden, and B. Vanderheyden, "Numerical simulation of the magnetization of high-temperature superconductors: a 3D finite element method using a single time-step iteration", Superconductivity Science and Technology 22 (2009) 055005.
[38] L. N. Shehata and H. T. F. Refai, "Curved Flux Line Effects in a Type-I1 Superconducting Hollow Cylinder", Physica status solidi 133 (1986) 707.
[39] M. K. Alqadi, F. Y. Alzoubi, S. M. Saadeh, H. M. AlKhateeb, and N. Y. Ayoub, "Force Analysis of a Permanent Magnet and a Superconducting Hollow Cylinder", Journal of Superconductivity and Novel Magnetism 25 (2012) 1469.
[40] E. Altshuler and R. Mulet, "Penetration of Circular Vortices into a Superconducting Hollow Cylinder", Journal of Superconductivity 8 (1995) 779.
[41] E. Altshuler and R. Mulet, "The azimuthal critical state of a superconducting hollow cylinder", Physica C 292 (1997) 39.
[42] J. F. Fagnard, M. Dirickx, M. Ausloos, G. Lousberg, B. Vanderheyden and Ph Vanderbemden, "Magnetic shielding properties of high- Tc superconducting hollow cylinders: model combining experimental data for axial and transverse magnetic field configurations", Superconductivity Science and Technology 22 (2009) 105002.
[43] J. F. Fagnard, S. Elschner, A. Hobl, J. Bock, B. Vanderheyden, and P. Vanderbemden, "Magnetic shielding properties of a superconducting hollow cylinder containing slits: modeling and experiment", Superconductivity Science and Technology 25 (2012) 104006.
[44] D. J. Frankel, "Model for flux trapping and shielding by tubular superconducting samples in transverse fields", IEEE Transactions on Magnetics 15 (1979) 1349.
[45] E. Holguin, H. Berger, and J. F. Loude, "Dynamics of flux penetration in superconducting YBaCuO Hollow Cylinder", Solid State Communications 74 (1990) 263.
[46] D. Karmakar, "Studies of magnetization and related properties for hard type-II superconductors", Indian Journal of Physics 79 (2005) 1107.
[47] J. F. Fagnard, S. Denis, G. Lousberg, M. Dirickx, M. Ausloos, B. Vanderheyden and Ph Vanderbemden, "DC and AC Shielding Properties of Bulk High-Tc superconducting Tubes", IEEE Transactions on Applied Superconductivity 19 (2009) 2905.
[48] S. Denis, M. Dirickx, Ph Vanderbemden, M. Ausloos, and B. Vanderheyden, "Field penetration into hard type-II superconducting tubes: effects of a cap, a non- superconducting joint, and non-uniform superconducting properties", Superconductivity Science and Technology 20 (2007) 418.
[49] S. Denis, L. Dusoulier, M. Dirickx, Ph Vanderbemden, R. Cloots, M. Ausloos, and B. Vanderheyden, "Magnetic shielding properties of high-temperature superconducting tubes subjected to axial fields", Superconductivity Science and Technology 20 (2007) 192.