Experimental aspects of Alpha, Beta angles distortion on superconductivity in 1111-type Iron-based superconductor

Document Type : Original Article

Authors

Magnet & Superconducting Res. Lab., Department of Physics, Alzahra University, Tehran, 199389, I.R. Iran

Abstract

In this research, we aim to clarify the relationship between the structural distortion due to doping and the superconductivity existence in the FeAs4 structure. For this, we have prepared polycrystalline of NdFeAsO0.8F0.2, NdFeAs0.95Sb0.05O0.8F0.2 and Nd0.99Ca0.01FeAsO0.8F0.2 samples by one-step solid-state reaction method. The structural and electrical properties of the samples were characterized through the X-ray diffraction pattern and the 4-probe method, respectively. The XRD patterns, refined using the MAUD software and Rietveld’s method, have indicated formation of the tetragonal structure with the space group P4/nmm:2. The variation of the lattice structuralparameters for the NdFeAsO0.8F0.2 doping with Sb and Ca ions were obtained by the Rietveld refinement. The changes of bond lengths and the ⍺, β bond angles have been specified from the corresponding value of ⍺ and β regular FeAs4-tetrahedron with the Sb/As and Ca/Nd doping, where they affect the superconductivity existence. The α and β bond angles increase and decrease with the substitution of Sb/As and Ca/Nd doping, which leads to the contraction of the FeAs layer, and therefore the lattice parameter “c” decreases. The superconducting transition temperature was reduced from 56 K for NdFeAsO0.8F0.2 sample to 48 K and 46 K for Ca/Nd and Sb/As doping, respectively. It can be concluded from the structural and electrical properties that the superconducting transition temperature decreases with increasing the distortion of FeAs4-tetrahedron from the regular one. So, there is a relation between the structural properties and the superconductivity in the iron based superconductors-1111 regardless of the doping procedures.

Keywords

Article Title [Persian]

نمود تجربی تغییر زوایای آلفا و بتا در ابررسانایی ابررساناهای پایه آهن نوع 1111

Authors [Persian]

  • وحید دادمهر
  • زهرا البرزی
  • فاطمه شهباز طهرانی

گروه فیزیک، دانشکده فیزیک و شیمی، دانشگاه الزهرا، تهران، ایران

Abstract [Persian]

در این مقاله، با استفاده از روش واکنش حالت جامد یک مرحله ای پلی کریستالهای NdFeAsO0.8F0.2، NdFeAs0.95Sb0.05O0.8F0.2  و Nd0.99Ca0.01FeAsO0.8F0.2 تهیه شدند. خواص ساختاری و الکتریکی نمونه ها از طریق پراش اشعه ایکس و روش پروب چهار نقطه مشخص شدند. الگوهای XRD که با استفاده از نرم افزار MAUD و روش Rietveld تحلیل شده اند ساختار تتراگونال با گروه فضایی P4/nmm:2 را نشان می دهدند. تغییر پارامترهای ساختاری شبکه برای آلایش NdFeAsO0.8F0.2  با یونهای Sb و Ca با پالایش Rietveld حاصل شد. تغییرات طول و زاویه پیوند های ⍺ ، β از مقدار متناظر ⍺ و β در FeAs4 تتراهدرون منظم با بجانشینی ناخالصی Sb/As و Ca/Nd مشخص شده اند که بر دمای گذار ابررسانائی تاثیر می گذارند. دمای گذار ابررسانائی به ترتیب 56 کلوین برای نمونه  NdFeAsO0.8F0.2به 48 و 46 کلوین به ترتیب برای آلایش Ca/Nd و Sb/As کاهش یافت. از نتایج مطالعات ما در مورد خواص ساختاری و الکتریکی می توان نتیجه گرفت که دمای گذار ابررسانایی با افزایش اعوجاج زوایا از حالت منظم تتراهدرون FeAs4 کاهش می یابد. بنابراین، ارتباطی بین خواص ساختاری و ابررسانایی در ابررساناهای پایه آهن نوع 1111 بدون در نظر گرفتن نوع آلایشهای متفاوت وجود دارد.

Keywords [Persian]

  • ابررسانای پایه آهن
  • آلایش
  • دمای گذار ابررسانائی
  • طول و زاویه های پیوند ساختار تتراهدرون
  • تتراهدرون FeAs4
[1] H.H. Yoichi Kamihara, M. Hirano, R. Kawamura, H. Yanagi,T. Kamiya, H. Hosono, Iron-Based Layered Superconductor: LaOFeP Journal of American Chemical Society, 128 (2006) 10012.
[2] T.W. Yoichi Kamihara, M. Hirano, H. Hosono, “Iron-Based Layered Superconductor La[O1-xFx]FeAs (x=0.05-0.12) with Tc=26K.” Journal of American Chemical Society, 130 (2008) 3296.
[3]J. G. Bednorz, K. A. Müller, “Possible High Tc Superconductivity in the Ba-La-Cu-O, System Z.” Physica B: Condensed Matter, 64 (1986) 189.
[4] S. Gholipour, V. Daadmehr, A.T. Rezakhani, H. Khosroabadi, F. Shahbaz Tehrani, R. Hosseini Akbarnejad, “Structural Phase of Y358 Superconductor Comparison with Y123.” Journal of Superconductivity and Novel Magnetism, 25 (2012) 2253.
[5] H. Takahashi, K. Igawa, K. Arii, Y. Kamihara, M. Hirano, H. Hosono, “Superconductivity at 43K in an iron-based layered compound LaO1-xFxFeAs.” Nature, 453 (2008) 376.
[6] H.H. Nan-Lin Wang, P. Dai, “Iron based superconductor.” Taylor & Francis Group, LLC, Broken Sound Parkway NW, 2013.
[7] F.C. Hsu, J.Y. Luo, K.W. Yeh, T.K .Chen, T.W. Huang, P.M. Wu, Y.C. Lee, Y.L. Huang, Y.Y. Chu, D.C. Yan, M.K. Wu, “Superconductivity in the PbO-type structure alpha-FeSe.” Proceedings of the National Academy of Sciences of the United States of America, 105 (2008) 14262.
[8] J.H. Tapp, Z. Tang, B. Lv, K. Sasmal, B. Lorenz, P.C.W. Chu, A.M. Guloy, “LiFeAs: An intrinsic FeAs-based superconductor with Tc=18 K.” Physical Review B, 78 (2008) 060505.
[9] M. Rotter, M. Tegel, D. Johrendt, “Superconductivity at 38 K in the iron arsenide (Ba1-xKx)Fe2As2.” Physical Review Letters, 101 (2008) 107006.
[10] F. Hardy, R. Eder, M. Jackson, D. Aoki, C. Paulsen, T. Wolf, P. Burger, A. Böhmer, P. Schweiss, P. Adelmann, R.A. Fisher, C. Meingast, “Multiband Superconductivity in KFe2As2: Evidence for One Isotropic and Several Lilliputian Energy Gaps.” Journal of the Physical Society of Japan, 83 (2014) 014711.
[11] M. Calamiotou, D. Lampakis, N.D. Zhigadlo, S. Katrych, J. Karpinski, A. Fitch, P. Tsiaklagkanos, E. Liarokapis, “Local lattice distortions vs. structural phase transition in NdFeAsO1−xFx.” Physica C: Superconductivity and its Applications, 527 (2016) 55.
[12] Y. Qi, Z. Gao, L. Wang, D. Wang, X. Zhang, Y. Ma, “Superconductivity in Co-doped SmFeAsO.” Superconductor Science and Technology, 21 (2008) 115016.
[13] J. Dong, H.J. Zhang, G. Xu, Z. Li, G. Li, W.Z. Hu, D. Wu, G.F. Chen, X. Dai, J.L. Luo, Z. Fang, N.L. Wang, Competing orders and spin-density-wave instability in La(O1−xFx)FeAs, Europhysics Letters, 83 (2008) 27006.
[14] H. Ota, K. Kudo, T. Kimura, Y. Kitahama, T. Mizukami, S. Ioka, M. Nohara, “Site-Selective Antimony Doping in Arsenic Zigzag Chains of 112-Type Ca1−xLaxFeAs2.” Journal of the Physical Society of Japan, 86 (2017) 025002.
[15] F. Ye, S. Chi, W. Bao, X.F. Wang, J.J. Ying, X.H. Chen, H.D. Wang, C.H. Dong, M. Fang, “Common crystalline and magnetic structure of superconducting A2Fe4Se5 (A=K,Rb,Cs,Tl) single crystals measured using neutron diffraction.” Physical Review Letters, 107(2011) 137003.
[16] Z. Alborzi, V. Daadmehr, “Synthesis and characterization of iron based superconductor Nd-1111.” Physica C: Superconductivity and its Applications, 549 (2018) 116.
[17] R S Meena, K.V.R.Rao, H. Kishan, V. P. S. Awana, “Inter-comparison of electric and magnetic behaviour of superconducting quaternary oxypnictide compounds.” IOP Conference Series: Materials Science and Engineering, 171 (2017) 012153. 
[18] P.M. Aswathy, J.B. Anooja, N. Varghese, C.K. Chandrakanth, N. Devendra Kumar, A. Sundaresan, U. Syamaprasad, “Rare earth (RE – Ce, Gd) modified Nd1−xRExFeAsO0.7F0.3superconductor with enhanced magneto-transport properties.” RSC Advances, 5 (2015) 41484.
[19] S. Chul Lee, E. Satomi, Y. Kobayashi, M. Sato, “Effects of Ru Doping on the Transport Behavior and Superconducting Transition Temperature of NdFeAsO0.89F0.11. ” Journal of the Physical Society of Japan, 79 (2010) 023702.
[20] P.M. Aswathy, J.B. Anooja, N. Varghese, U. Syamaprasad, “Microstructural refinement and enhanced transport properties in binary doped NdFeAsO superconductor.” Journal of Applied Physics, 115 (2014) 053903.
[21] A. Kawabata, S. Chul Lee, T. Moyoshi, Y. Kobayashi, M. Sato, “Superconductivity of LaFe1-yCoyAsO1-xFx.” Journal of the PhysicalSociety of Japan, 77 (2008) 103704.
[22] K.D.S.a.C.K. Jorgensen, “Electronegativity.” Springer-Verlag, Berlin, Heidelberg, NewYork, 1967.
[23] T. Nomura, Y. Inoue, S. Matsuishi, M. Hirano, J. E. Kim, K. Kato, M. Takata, H. Hosono, “Comparison of crystal structures and the effects of Co substitution in a new member of the Fe-1111 superconductor family AeFeAsF (Ae = Ca and Sr): a possible candidate for a higher-Tc superconductor.” Superconductor Science and Technology, 22(2009) 055016.
[24] C.-H. Lee, A. Iyo, H. Eisaki, H. Kito, M. Teresa Fernandez-Diaz, T. Ito, K. Kihou, H. Matsuhata, M. Braden, K. Yamada, “Effect of Structural Parameters on Superconductivity in Fluorine-Free LnFeAsO1-y(Ln = La, Nd).” Journal of the Physical Society of Japan, 77 (2008) 083704.
[25] Z. Alborzi and V. Daadmehr, Journal of Superconductivity and Novel Magnetism, submitted, https://arxiv.org/abs/1901.00797v1 (2019).
[26] F.S. Tehrani and V. Daadmehr, https://arxiv.org/abs/1901.10872v1 (2019).
[27] K. Kuroki, H. Usui, S. Onari, R. Arita, H. Aoki, “Pnictogen height as a possible switch between high-Tc nodeless and low-Tc nodal pairings in the iron-based superconductors.” Physical Review B, 79 (2009) 224511.
[28] K. Kuroki, “Anion height as a controlling parameter for the superconductivity in iron pnictides and cuprates.” Journal of Physics and Chemistry of Solids, 72 (2011) 307.