[1] G. Veneziano, “A string nature needs just two constants.” Europhysics Letters, 2 (1986) 199.
[2] D. Amati, M. Ciafaloni, G. Veneziano, “Can space-time probed below the sring size?” Physics Letters B, 216 (1989) 41.
[3] A. Kempf, G. Mangano, and R. B. Mann, “Hilbert space representation of the minimal length uncertainty relation.” Physical Review D, 52 (1995) 108.
[4] M. Maggiore, “A generalized uncertainty principle in quantum gravity.” Physics Letters B, 304 (1993) 65.
[5] P. Dzierzak, J. Jezierski, P. Malkiewicz and W. Piechocki, “The minimum length problem of loop quantum cosmology.” Acta Physica Polonica B, 41 (2010) 717.
[6] L. J. Garay, “Quantum gravity and minimal length”, International J. Modern Physics A, 10 (1995) 145.
[7] J. Magueijo and L. Smolin, Lorentz invariance with an invariant energy scale, Phys. Rev. Lett. 88 (2002) 190403.
[8] G. Amelino-Camelia, Testable scenario for relativity with minimum length, Physics Letters B, 510 (2001) 255.
[9] T. Zhu, J. R. Ren, M. F. Li, “Influence of generalized and extended uncertainty principle on thermodynamics of FRW universe.” Physics Letters B, 674 (2009) 204.
[10] A. Tawfik, H. Magdy A. Farag Ali, “Effects of quantum gravity on the inflationary parameters and thermodynamics of the early universe.” General Relativity & Gravitation, 45 (2013) 1227.
[11] P. Bargueño, E. C. Vagenas, “Semiclassical corrections to black hole entropy and the generalized uncertainty principle.” Physics Letters B, 742 (2015) 15.
[12] S. Gangopadhyay, A. Dutta, A. Saha, “Generalized uncertainty principle and black hole thermodynamics.” General Relativity & Gravitaion 46 (2014) 1661.
[13] A. Farag Ali, M. Faizal, M. M. Khalil, “Remnants of Black Rings from Gravity’s Rainbow.” JHEP 1412 (2014) 159.
[14] S. H. Hendi and M. Faizal, “Black holes in Gauss-Bonnet gravity’s rainbow.” Physical Review D, 92 (2015) 044027.
[15] M. Mirtorabi, S. Miraboutalebi A. A. Masoudi and L. Farhang Matin, “Quantum gravity modifications of the relativistic ideal gas thermodynamics.” Physica A, 506 (2018) 602.
[16] B. Vakili and M. A. Gorji. “Thermostatistics with minimal length uncertainty relation.” Journal Statistical Mechanics: Theory & Experiment, 2012 (2012) P10013.
[17] A. E. Shalyt-Margolin and J. G. Suarez, “Quantum mechanics at Planck’s scale and density merix.” International J. Modern Physics D, 12 (2003) 265.
[18] A. E. Shalyt-Margolin, A. Y. Tregubovich, “Deformed density matrix and generalized uncertainty relation in thermodynamics.” Modern Physics Letters A, 10 (2004) 71.
[19] S. Miraboutalebi and L. Farhang Matin, “Thermodynamics of canonical ensemble of an ideal gas in presence of Planck-scale effects.” Canadian J. Physics 93 (2015) 1.
[20] L. Farhang Matin and S. Miraboutalebi, “Statistical aspects of harmonic oscillator under minimal length supposition.” Physica A, 425 (2015) 10.
[21] K. Nozari, “Some aspects of Planck scale quantum optics.” Physics Letters B, 629 (2005) 41.
[22] A. F. Ali, S. Das and E. C. Vagenas, “Proposal for testing quantum gravity in the lab.” Physical Revies D, 84 (2011) 044013.
[23] F. Reif, Statistical Physics, Berkeley Physics Course - Volume 5, McGraw-Hill (1975).
[24] R. K. Pathria, Statistical Mechanics - 2nd ed., Butterworth-Heinemann (1997).
[25] W. Greiner, L. Neise and H. Stöcker, Thermodynamics and Statistical Mechanics, Springer-Verlag New York (1997).
[26] P. J. Mohr, B. N. Taylor and D. B. Newell, “CODATA Recommended Values of the Fundamental
Physical Constants.” Review Modern Physics, 84 (2012) 1527.
[27] H. Grote, LIGO Scientific Collaboration. “The status of GEO 600.” Classical Quantum Gravity, 25 (2008) 114043.
[28] B. P. Abbott, et al., “LIGO: the laser interferometer gravitational-wave observatory.” Reports on Progress in Physics, 72 (2009) 076901.