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In this study, The statistical consequences of minimal length supposition are 

investigated for a canonical ensemble of ideal gas. These effects are encoded in the so-

called Generalized Uncertainty Principle (GUP) of the second order. In the framework 

of the considered GUP scenario, a unique partition function is obtained by using two 

different methods of quantum and classical approaches. It should be noticed that here 

we consider the magnitude of the momentum in the deformed Hamiltonian of the 

model. In this way, the model is different from the already existing model which does 

not have any significant result in the quantum approach. In particular, the corrections to 

the thermodynamical characteristics such as the mean energy, the entropy and the 

density of states are achieved. The induced improvements manifest themselves at very 

high-temperature limits. However, it is shown that, if one applies the predicted 

observational bound on the GUP deformation parameter, the modifications become 

more observable even at intermediate temperatures. The deformation parameter of the 

considered GUP model is also estimated for nowadays precision of measurements of 

the heat capacity of an ensemble of hydrogen atoms. 
  
 

 

1 Introduction 
 

 One of the principal challenges of modern physics 

today is to conciliate the concepts of quantum gravity 

and ordinary quantum mechanics. One of the topics of 

these notions is the possible minimum scale of length 

which is contemplated by quantum gravity theories. 

This is an ancient conception which has attracted much 

attention during the history of science. Recently, this 

problem also finds a new concern by the progress of 

quantum gravity theories such as string theories and 

semi-classical black hole physics [1]-[4], loop 

quantum gravity [5]-[6], and doubly special relativity 

[7]-[8]. However, in order to incorporate the concept 

of the minimal scale of length into ordinary quantum 

mechanics, the Heisenberg uncertainty principle, 

should be modified. Thus, the Generalized Uncertainty 

Principle (GUP) has been established. 

 With the growth of research in GUP models, it has 

become more necessary to guarantee the existence of 

the minimal scale of length and reveal its 

characteristics and hence observe and examine the 

outgoings of GUP models. Statistical mechanics 

provides a framework to examine the quantum results 

of a physical system and hence can prepare a powerful 

tool to test GUP modifications of quantum mechanics 

as well. In the past few years, many papers have 

appeared in the literature to study the statistical 

consequences of the presence of a minimum 

measurable length in the context of the GUP model. 

Some of these researches are devoted to the 
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thermodynamics for the FRW universe [9] and the 

early universe [10], the black holes [11]-[12], the 

gravity’s Rainbow [13]-[14]. The thermodynamics of 

the relativistic ideal gas in the GUP framework is 

analyzed in [15]. With the minimal length uncertainty 

relation, the Maxwell-Boltzmann statistics is 

investigated [16]. The density of state deformation and 

an improved definition of the statistical entropy in a 

GUP model have been introduced in [17] and [18].  

 Recently we have introduced a simple method to 

investigate the statistical consequences of GUP models 

[19] and [20]. The procedure is based on the 

perturbation theory. In fact, the GUP induced relative 

corrections of different physical quantities are small in 

such a way that the perturbation method works well. 

Moreover, in GUP models, only the leading terms of 

the modifications parameters appearing in the 

Heisenberg uncertainty principle are kept. Hence, the 

Gup models themselves have perturbation expansion 

[21]. 

 In our previous work, we have investigated the first 

order influence of GUP on the thermodynamics of the 

canonical ensemble of the ideal gas. We have applied 

our method to find the statistical characteristics of a 

canonical ensemble of distinguishable ideal gas and 

harmonic oscillator systems. The proposed procedure 

is efficient and is deficient from the usual difficulties. 

The modified partition function of the system has been 

obtained by applying the first order perturbation 

method. The associated thermodynamical quantities of 

the system such as the mean energy, entropy, 

Helmholtz free energy, the chemical potential, and 

specific heat and pressure have been achieved by using 

the obtained partition function. It is observed that in 

the framework of the considered GUP model, the mean 

energy, the specific heat, and entropy are reduced as 

compared with their ordinary values. However, some 

other quantities such as the Helmholtz free energy and 

chemical potential increase, while the pressure remains 

unchanged. The density of states has also been 

obtained in which the GUP induced term acquires a 

negative value proportional to the mass of the 

particles. 

 These investigations have been applied to the GUP 

model of the first order of the deformation parameter. 

In the present task, we consider the second order GUP 

model [6]. This version of GUP is more 

comprehensive and besides being consistent with the 

concept of the so-called minimal length scale,  

provides the concept of the maximal momentum scale. 

In the framework of this version of GUP, we study the 

modifications of the thermodynamics of the canonical 

ensemble of the ideal gas. 

 The GUP model, we apply here, is presented by the 

commutator:  

 [ ] ( )22421=, ppipx αα +−h , (1) 

where 0>α is the deformation parameter so that for 

0=α , the ordinary commutator relation is recovered. 

The parameter α  is given as 
cM

L

Pl

Pl 0
0 ==

α
αα

h

with PlL and PlM  being the Planck length and mass, 

respectively and 0α  is a free parameter. Nowadays, 

the best upper bound on the magnitude of 0α  can be 

found from the Lamb shift experiment precision in 

hydrogen as 10
0 10<α . 

The modified commutator (Eq. (1)) leads to the 

following generalized uncertainty principle:  

( ).><421
2

22
pppx αα +〉〈−≥∆∆

h
 (2) 

The generalized position x  and momentum p , which 

satisfy the commutator relation (Eq. (1), in position 

representation, can be written as follows: 

 .)2(1=,= 2
0

2
000 ppppxx αα +−  (3) 

where, 0x  and 0p  satisfy the canonical commutation 

relation hipx =],[ 00 . Here we consider 0p  as the 

magnitude of the momentum operator. This is different 

from the already existing supposition. 

Using Eq. (3), it has been shown that any non-

relativistic Hamiltonian of the form )(
2

=
2

rV
m

p
H

r
+  

can be written as: 

HHH ∆+0= , (4) 

where 0H  is the ordinary Hamiltonian:  
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),(
2

=
2
0

0 rV
m

p
H

r
+  (5) 

where H∆  denotes its deviation due to the GUP 

effects:  

,= 4321 HHHHH +++∆  (6) 

where  

�� = − �� ��	,            �� = 5��2� ��� ,    
                                                                          

(7) 

�	 = − 2�	� ���,           �� 2��� ���,     
where the Hamiltonians iH  represent the 

perturbations. 

This article attempts to study the consequences of the 

statistical mechanics of an ensemble of  the ideal gas 

in the context of the GUP model of Eq. (1). The 

ensemble is supposed to be composed of systems 

consisting in N  identical and noninteracting 

molecules, confined to a space of volume V . The 

number N  is normally assumed to be extremely large 

as the order of 2310 . It is considered a canonical 

ensemble in which the system is supposed to be 

immersed in a very large heat reservoir. On attaining a 

state of mutual equilibrium, the system of the ideal gas 

and the reservoir would have a common temperature 

T . The partition function of the system is obtained by 

using two different methods, namely quantum and 

classical approaches. Then, the modified statistical 

quantities of the system are obtained in a 

straightforward manner. 

This paper is organized as follows: In section two the 

modified spectrum of a particle confined in a well is 

obtained in the framework of the considered GUP 

model. In section three by applying the quantum 

approach, the modified partition function of a 

canonical ensemble of monatomic ideal gas is 

calculated up to the first order of the deformation 

parameter of the model. In section four, by employing 

the phase space mechanism it is attempted to find the 

partition function of the same system. As expected, the 

two approaches lead to the same partition function. 

Section five is devoted to specifying the improved 

thermodynamical characteristics of the system by 

using the obtained partition function. Finally, section 

six presents the results. 

2 Modified spectra of a particle in a well 
 

 Let us suppose a system that consists of a particle of 

mass m  confined to a one-dimensional square well of 

width L . The potential energy of the particle is given 

by: 









∞

≤≤

∞

xL

Lx

x

xV

<

00

0<

=)( . (8) 

In order to estimate the Planck scale effect on the 

energy spectrum of the particle, we apply here the 

standard perturbation theorem. The full Hamiltonian is 

given by Eq. (4) where the term H∆  should be 

considered as its perturbation part. The allowed energy 

spectrum of the bound state solutions for the 

unperturbed Hamiltonian is given by  

,...1,2,3,=,
2

= 2

2

22
(0) nn

mL
En

hπ
 (9) 

In the framework of the standard perturbation theory, 

the explicit expansion of the energy shift of the n th 

level takes the following form:  

(0)= nnn EE −∆ ....
|)(|

)(=
(0)(0)

2

+
−

∆
+∆ ∑

≠ kn

kn

nk

nn
EE

H
H     (10) 

where knH )(∆  are the matrix elements of H∆  with 

respect to the unperturbed eigenvectors, namely  

.||=)( (0)(0) 〉∆〈∆ nHkH kn  (11) 

 In the well, 0=)(xV  and the unperturbed 

Hamiltonian is 
m

p
H

2
=

2
0

0 . 

The unperturbed Hamiltonian 0H  is degenerate and 

for any magnitude 0p  we have two different 

eigenvectors 〉(0)| n = 〉0| p  and 〉(0)| n = 〉− 0| p . The 

perturbed Hamiltonians iH ’s , via relation Eq. (7), are 
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functions of 0p  which we consider here as the 

magnitude of the momentum operator. Hence, when 

we apply 
iH ’s on them, both 〉(0)| n  result in positive 

values. Hence for odd powers of 
ip ’s in 

iH ’s we do 

not obtain zero for the elements 
nniH )(  in the integral 

summations due to the oddness of the integrand. 

However, if one does not consider 0p  as the 

magnitude of the momentum operator, then the 

elements nniH )(  obtain positive and negative values 

which cancel each other in the summation. This 

already existing case does not contain any significant 

consequences and the leading terms of the modified 

energy become zero. Instead, by regarding 0p  in the 

modified Hamiltonians 
iH ’s, as the magnitude of 

momentum, the modified energy levels become 

significant. 

Using Eq.(10), the correction to the energy spectrum is 

then given as: 

,)(= nnn H∆∆  (12) 

also 0=knH∆  for nk ≠ . Using Eqs. (6) and (7), the 

energy shift can be decomposed as:  

4321= nnnnn ∆+∆+∆+∆∆ , (13) 

where  

.)(= nnini H∆  (14) 

The energy shift 1n∆  then can be calculated as: 

〉〈−∆ (0)3
0

(0)
11 ||=)(= npn

m
H nnn

α
, 

                        ( ) .2= 2

3
(0)
nmE

m

α
−                    (15) 

The other parts of the energy shift can similarly be 

obtained as follows:  

∆��= 5��2� �2��������,     
∆�	= − 2�	� �2���������, 

∆��= ���
� �2�������	,                                     �16�              

 Equations (15) and (16) present the GUP corrections 

to the energy spectrum of a particle in the well (Eq. 

(8)). The strength of these modifications depends on 

the mass of the particle and the energy values (0)
nE . 

The Planck scale effects are therefore enhanced for 

massive particles and upper energy levels. Let us now 

examine the validity of our perturbation method and 

the convergence of the energy series. Using Eq. (15), 

one obtains: 

1/2(0)0
(0)

1 )(2
2

= n

Pln

n mE
cME

α
−

∆
. (17) 

For the hydrogen atom with 

kgckeVm  109.11=/ 511= 312 −×  and nmL  0.2=  

(the diameter of the atom), the energy spectrum, from 

Eq.(9), becomes JnEn   101.51 218(0) −×≈ . Then, for 

kgM Pl  102.1= 8−× , Eq. (17) yields:  

n
En

n   100.53= 0
24

(0)
1 α−×−

∆
. (18) 

Equation (15) shows that for the upper limit 10
0 10<α  

and the energy levels 1410<n , the conditions 1<
(0)

(1)

n

n

E

∆
 

is well satisfied. Similarly, we have:  

1,..4=,)(2 1/2(0)01)(
imE

cM
n

Plni

in α
−∝

∆

∆ +
 (19) 

which, yeilds:  

n
ni

in
  100.264 0

241)( α−+
×−∝

∆

∆
. (20) 

Equation (20) again yields the condition 1<||
)(

1)(

i

n

i

n

∆

∆ +

 

for 10
0 10<α  and 1410<n . Therefore, the energy 

series expansion converges and the applied 

perturbation method is meaningful. 
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3 Modified quantum canonical partition 

function  
 

 Consider a canonical ensemble of ideal gas composed 

of systems that each consists of N  identical 

noninteracting particles enclosed by an adiabatic wall 

with width L . Suppose that the systems are kept at 

equilibrium by being in contact with a heat bath at 

temperature T . The macrostate of the ensemble is 

defined through the parameters N , L , and T . The 

partition function of a single molecule of a system is 

given by: 

,= n
E

n

eQ
β−∑  (21) 

where 
kT

1
=β  and k  is the Boltzmann factor. 

Considering 
nnn EE ∆+(0)= , Eq. (21) can be rewritten 

as: 

 .=
(0)







 ∆+−

∑ nn
E

n

eQ
β

 (22) 

Applying a simple series expansion to Eq.(22), allow 

the following form for the modified partition function: 

( ) ....1=
(0)

4321
n

E

nnnn

n

eQ
β−

+∆+∆+∆+∆+∑  (23) 

In view of the largeness of the number of states of a 

particle and the largeness of the width of the well to 

which the particle is confined, we convert the sum into 

an integral, treating n  as a continuous variable, 

namely dn ∫∑→ , [23]. In this way, the first term of 

Eq. (23) yields the unperturbed partition function:  

(0)

0

(0) = n
E

dneQ
β−∞

∫
2

1

2
= 









πβ

mL

h
                           (24) (24) 

where, 2

2

22
(0)

2
= n

mL
En

hπ
 has been replaced. The 

corrections to the partition function can then be found 

by the relation: 

 

( ) .... =
2

22

22

4321
0

n
mL

nnnn ednQ

hπ
β−∞

+∆+∆+∆+∆∆ ∫ (25) 

Substituting Eqs. (15) and (16), the integration of Eq. 

(25) leads to:  

























−−∆

2

1

32 22
30

2
101

2
=

β

π

β
α

β
α

πβ
α

mmmLm
Q

h
. (26) 

Equation (26) relates the partition function induced by 

the considered GUP model. The complete quantum 

partition function for a one-particle one-dimensional 

system in the framework of the considered GUP model 

then is given by:  

.= (0)
QQQ ∆+  (27) 

4 Modified classical canonical partition 

function 
 

 For classical systems, the most appropriate framework 

for developing the formalism of specifying the 

thermodynamics is the phase space [24, 25]. In 

classical mechanics, a state of motion of N  particles 

in one dimension is uniquely determined by the N  

coordinates and N  momentums. Each pair ),( ii pq , 

corresponds to one point in a N2 -dimensional space 

in the phase space. Consider a canonical ensemble of 

ideal gas composed of systems where each consist of 

N  identical noninteracting particles enclosed by the 

adiabatic well with width L . Suppose that the systems 

are kept at equilibrium by being in contact with a heat 

bath at temperature T . The macrostate of the 

ensemble is defined through the parameters N , L  and 

T . For a system in a heat bath it is sufficient to 

calculate the partition function that yields the free 

energy, from which follows all properties of the 

system at a given temperature. 

 The partition function in the phase space, for a single 

particle in a system of the ensemble, is given by:

,  
1

= 0
H

edqdp
h

Q
β−∫  (28) 
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where dqdp  0  is the differential element of the phase 

space. It is supposed that the particle has no interaction 

with its surroundings so that the energy of the particle 

is wholly kinetic. The corresponding Hamiltonian is 

given by Eq. (4) and substituting in Eq. (28), leads to 

the partition function:  

( ),  
1

= 0
HH

edqdp
h

Q
∆+−∫ β

 (29) 

In order to compute Eq. (29), a simple series expansion 

to the integrand He ∆−β  is first applied. Then, by 

rearranging terms with respect to the parameter α , 

one finds: 

� = �ℎ ! "��

#$
$$
$$
$$
$% 1 − �&�� + �� (−&�� + &�2 ���)

+�	 (−&�	 + &����� − &	3! ��	)
+��

,
-−&�� + &�2 ��� + &����	

− &�2 ����� − &�4! ��� /
0

12
22
22
22
23

4
54  

 (30) 

where Ldq =∫ . The first term of Eq. (30) yields the 

ordinary classical partition function as: 

m

p

edp
h

L
Q 2

2
0

00 =

β
−∞

∞−∫ ,
2

=
2

1










πβ

mL

h
                        (31) 

which is equal to the quantum one, namely Eq. (24). 

Inserting the definitions iH ’s from Eq. (7), integrating 

the other terms of Eq. (30) yields the same relation as 

Eq. (26). This means that the classical and quantum 

approaches results in the same partition function for 

the considered system in the framework of the 

considered GUP model. 

Relation (27) states the one-dimensional partition 

function of a one particle system. The N-particle 

partition function in three dimensions then can be 

obtained by using the relation 
!

)(
=

3

3
N

Q
Q

N

N . This 

relation is correct by the assumption of homogeneity 

and isotropy of the space-time and the 

indistinguishability of the particles. 

5 Modified thermodynamics 
 

The modified partition function of the system, in the 

presence of the GUP model, has been calculated in the 

last section. Using the partition function, let us now 

obtain some statistical characteristics of the considered 

canonical system. The mean energy of the system in 

the ensemble, namely 
V

E
U = , can be found by using 

the relation:  

( ).= 3NQlnU
β∂

∂
−  (32) 

Using Eq. (27), we have: 

  

ln �	8 = 9 + 9ln :;9 < �2=&>�?	/�A + 69� <2�=& ?�/�

− 1209�	 <�& ? <2�=& ?��

− 7209��  <�& ?� ,                          �33�  
where considering 1<

β

m
, the series expansion of the 

form /2)(1ln 2
xxx −+ ;  is applied. Substituting Eq. 

(33) in Eq. (32), the mean energy can be found in the 

following form: 

  
D = 32 9EF G1 + 2� <2�=& ?�/� − 120�	 <�& ? <2�=& ?��

− 960��  <�& ?�I,                          �34�  
 Here the first term is the ordinary mean energy in the 

absence of GUP while the other terms show the GUP 

induced corrections. The GUP modification terms 

depend on the particle number N , the mass of each 

particle m , the temperature T  and the deformation 

parameter α . From Eq. (34) it is obvious that the 

energy increases in the presence of the applied GUP 

model. 

The specific heat at constant volume follows from: 
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,=
,VN

V
T

U
C 








∂

∂
 (35) 

 where by substituting in Eq. (34), leads to: 

JK ≈ 32 9E G1 + 3� <2�=& ?�� − 300�	 <�& ? <2�=& ?��

− 2880��  <�& ?�I.                                                       �36�  
The first term Nk

2

3
 is the ordinary specific heat at 

constant volume. The other terms present the GUP 

modifications due to the minimal length suppositions. 

In the absence of the GUP modification, namely for 

0=α , the ordinary specific heat is obtained. Equation 

(36) shows that the specific heat increases in the 

framework of the GUP model. 

Another important quantity is the Helmholtz free 

energy that is given by:  

.)(  =),( 3NQlnkTTVA −  (37) 

 By substituting in Eq. (33), the modified Helmholtz 

free energy can be obtained. Then by using the result 

for the modified Helmholtz free energy, in the entropy 

relation  

,=
,VNT

A
S 








∂

∂
−  (38) 

 one obtains: 

S = 9E P52 + +ln :;9 < �EF2=>�?	/�A + 9� <2�=& ?�/�

− 300�	 <�& ? <2�=& ?��

− 2160��  <�& ?�Q .                                                        �39�  
 Equation (39) shows the modified entropy in the 

presence of the GUP model. The first two terms show 

the ordinary entropy in the absence of GUP ( 0=α ), 

while the other terms relate to the corrections. Hence 

in the framework of the GUP model, the total entropy 

of the system increases.  

The pressure of the system is given by: 

,=
,TNV

A
P 








∂

∂
−  (40) 

whiere by substituting in Eq. (37) gives the familiar 

ideal gas law, 

,=
V

NkT
P  (41) 

and hence the considered GUP model has no effect on 

the pressure of the system which is consistent with the 

result of  [19]. 

Another important thermodynamic characteristics are 

the density of states. The further expression for the 

partition function is given by: 

,)(=
0

3 dEEgeQ
E

N

β−
∞

∫  (42) 

where )(Eg  denotes the number of states around the 

energy value E , [24]. This relation indicates that for 

0>β , the partition function NQ3  is the Laplace 

transform of )(Eg . Hence using a simple extension of 

inverse Laplace transform one can immediately deduce 

that:  

0> )(
2

1
=)( 3 βββ

π
β

β

β
′∫

∞−′

∞+′
dQe

i
Eg N

E
i

i
 (43) 

Substituting 
NQ3  from Eq. (27) in Eq. (43) and using 

the following formula: 

,
!

= 
2

1
=

1 n

x
d

e

i
I

n

n

x
i

i
β

βπ

β
β

β +

∞−′

∞+′∫  (44) 

for 0≥x , and 0=I  for 0≤x , leads to  

g��� ≈ 39g���� : 139 + 2� <2��= ?�/� + 12= ��9��
+ 129��	 <2��= ?	/�

− 480= 9������A ,                                                        �45�  
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for 0≥E  and 0=)(Eg  for 0≤E . Here, )(0 Eg  is 

the ordinary state density in the absence of the 

considered GUP mode  which is given by: 

.

1)!
2

3
(2!

=)(

1
2

3

2

3

20

−








−

N

Em

N

V
Eg

NN
N

hπ
 (46) 

In computing Eq. (45), the supposition of the largeness 

of N  is applied. At the limit 0=α , from Eq. (45) 

one obtains )(=)( 0 EgEg . In Eq. (45), the terms 

containing the parameter α  are the corrections in the 

presence of the minimal length effects. It is noticeable 

here that the number of state increases in the presence 

of the considered GUP model. 

6 Upper bound on the modification 

parameter 

Let us now estimate the modifications of the 

thermodynamical characteristics obtained in the last 

section. By a priori assumption, the deformation 

parameter ST is of the order of ST ≈ U which induces 

a very small amount to the calculated 

thermodynamical characteristics. However, one may 

assign upper limits, higher than unity, to the magnitude 

of ST to made the modifications more measurable. For 

example, consider Eq. (36) which gives the specific 

heat formula in the presence of the considered GUP 

model. The relative correction with respect to the 

ordinary specific heat is:  ∆JKJK��� ≈ 3� <2�=& ?�� − 300�	 <�& ? <2�=& ?��

− 2880��  <�& ?� ,                                                           �47�  
This modification , for hydrogen atoms                           �� = 9.11 × 105	�EW� at room temperature (T=300 

K), and for the Planck mass �XYZ = 2.18 × 105[EW� 

can be estimated as follows: 

∆JKJK��� ≈ 0.22 × 105���� − 0.198 × 105\���	 − 0.22
× 105����,                                                                      �48�  
Today’s accuracy on the experimental values of JK can 

be considered about 105\, [26]. This is the accuracy of 

the experimental values of the universal gas constant 

obtained by measuring the speed of sound, which can 

be related to the value of JK. Considering this 

precision, from the first term of Eq. (48), the following 

upper bound can be set on the magnitude of the 

deformation parameter 0α : 

.10< 18
0α  (49) 

This upper bound is near to the value set by the 

position measurements ( 17
0 10<α ), [27, 28]. 

However, this upper bound is weaker than that set by 

the hydrogen Lamb shift effect ( 10
0 10<α ) and the 

electron tunneling effect ( 11
0 10<α ) [22]. 

7 Conclusions 

This study has found the thermodynamical 

consequences of the Planck scale of length and 

momentum on an ensemble of the ideal gas. In the 

framework of the considered version of the GUP 

relation, these scales manifest themselves in the 

Hamiltonian of the system, as two terms. The modified 

partition function of the system has been obtained by 

using two different methods, quantum, and classical 

approaches. These procedures lead to an identical 

result for the modified partition function. 

The mean energy, the specific heat, and entropy 

are increased as compared with their values in the 

HUP scheme, while the pressure remains 

unchanged. The density of states have also been 

obtained in which the GUP induced term acquire 

an overall positive value proportional to the mass 

of the particles. The consequences of this paper, 

about the reduction or increase of the obtained 

quantities, conflict with the results already been 

obtained in our previous work [19]. These 

inconsistencies are reasonable and appear due to 

applying different GUP models. In comparison, 

the leading terms of the modified Hamiltonian in 

these two GUP models have different signs. In 

fact, the first correction in the Hamiltonian we 

applied here, is of the form 3
01 = p

m
H

α
−  which is 

negative. However the modified Hamiltonian in 
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[19] is 4
0p

m

α
 which is positive. consequently, for 

example, the mean energy increases here but 

decreases in [19]. 
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