[1] Z. M Seeley, A. Bandyopadhyay, S. Bose, “Titanium dioxide thin films for high temperature gas sensors.” Thin Solid Films, 519 (2010) 434-438.
[2] T. Ohzuku, Z. Takehara, S. Yoshizawa, “Nonaqueous lithium/titanium dioxide cell.” Electrochimica Acta, 24 (1979) 219-222.
[3] S. Y. Wu, W. C. Lu, K. C. Chen, J. L. He, “Study on the preparation of nano-flaky anatase titania layer and their photovoltaic application.” Current Applied Physics, 10 (2010) S180-S183.
[4] A. Fujishima, T. N. Rao, D. A. Tryk, “Titanium dioxide photocatalysis.” Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 1 (2000) 1-21.
[5] X. Wang, Z. Li, J. Shi, Y. Yu, “One-dimensional titanium dioxide nanomaterials: nanowires, nanorods, and nanobelts.” Chemical Reviews, 14 (2014) 9346-9384.
[6] U. Diebold, “The surface science of TiO2.” Surface Science Reports, 48 (2009) 53-229.
[7] L. Stephen., “Titanium Dioxide Versatile Solid Crystalline: An Overview.” Assorted Dimensional Reconfigurable Materials, (2020) S35-S36.
[8] J. Zhang et al., “New understanding of the difference of photocatalytic activity among anatase, rutile and brookite TiO2.” Physical Chemistry Chemical Physics, 16 (2014) S20382–S20386.
[9] K. S. Ibrahim, “Carbon nanotubes-properties and applications: A Review.” Carbon Letters, 14 (2013) 131e144.
[10] R. Long, N. J. English, O. V. Prezhdo, “Photoinduced charge separation across the grapheneTiO2 interface is faster than energy losses: A time-domain ab initio analysis.” Journal of the American Chemical Society, 134 (2012) 14238– 14248.
[11] K. S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J.Y. Choi, B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes.” Nature, 457 (2009) 706–710.
[12] R. R. Nair et al., “Fine structure constant defines visual transparency of graphene.” Science, 320 (2008) 1308–1308. [13] M. Ghadiry et al., “Ultra-sensitive humidity sensor based on optical properties of graphene oxide and nano-anatase TiO2.” PLOS ONE, 11 (2016), e0149593.
[14] S. Wang, X. Cheng. “Solar photocatalytic degradation of typical indoor air pollutants using TiO2 thin film codoped with iron (III) and nitrogen.” Journal of Spectroscopy, 2015 (2015) S1-S6.
[15] P. Paunović,et al., “Structural changes of TiO2 as a result of CNTs incorporation.” Materials Science & Engineering, 6 (2022) 31-39.
[16] Debsish Sarkar, “Nanostructures Ceramics: Characterization and Analysis.” CRC Press (2018).
[17] Sada Kasap, “Principles of Electronic Materials and Devices (2nd Edition).” (2006) New York, McGraw-Hill. Dadras et al./Journal of Interfaces, Thin films, and Low dimensional systems 7 (2) Winter & Spring (2024) 765-772 772
[18] A. R. Zanatta, “Revisiting the optical bandgap of semiconductors and the proposal of a unified methodology to its determination.” Scientific Reports, 9 (2019) 11225.
[19] Y. F. Yuan et al., “Foam-like, 3-dimension mesoporous N-doped carbon-assembling TiO2 nanoparticles (P25) as high-performance anode material for lithium-ion batteries.” Journal of Power Sources, 420 (2019) 38-45.
[20] S. Chattopadhyay, S. Maiti, L. Das, S. Mahanty, G. De, “Electrospun TiO2-rGO composite nanofibers with ordered mesopores by molecular level assembly: a high performance anode material for lithium-ion batteries.” Advanced Materials Interfaces, 3 (2016) 1600761.
[21] Matouke Moise, “FTIR study of the binary effect of titanium dioxide nanoparticles (nTiO2) and copper (Cu2+) on the biochemical constituents of liver tissues of catfish.” Toxicology Reports, 6 (2019) 1061-1070.
[22] G. Susana, H. David, C. Jorge, H. Carlos, V. Lizbeth, A. Benjamín, R. Omar, “Development of a low-cost photocatalytic aerogel based on cellulose, carbon nanotubes, and TiO2 nanoparticles for the degradation of organic dyes.” Carbohydrate Polymers, 324 (2024) 121476.