[1] A. Khorsand Zak, W. H. Abd. Majid, M. E. Abrishami, R. Yousefi, “X-ray analysis of ZnO nanoparticles by Williamson–Hall and size– strain plot methods.” Solid State Sciences, 13 (2011) 251.
[2]. I. J. Kingsley; Abdul. Abraham; T. Aderemi; P. Ifeoma; A. Christianah; O. Martins, “Unravelling the effect of crystal dislocation density and microstrain of titanium dioxide nanoparticles on tetracycline removal performance.” Chemical Physics Letters, 776 (2021) 138725.
[3] H. Gleskova, S. Wagner, “Electron mobility in amorphous silicon thin-film transistors under compressive strain.” Applied Physics Letters, 79 (2001) 3347.
[4] S Stojadinović, A Ćirić, “Photoluminescence of ZnO: Eu3+ and ZnO: Tb3+ coatings formed by plasma electrolytic oxidation of pure zinc substrate” Journal of Luminescence, 235 (2021), 118022.
[5] I. Choudhary, R. Shukla, A. Sharma, K.K. Raina, “Effect of excitation wavelength and europium doping on the optical properties of nanoscale zinc oxide.” Journal of Materials Science Materials in Electronics, 31 (2020) 20033.
[6] Kazuhito Hashimoto, Hiroshi Irie, Akira Fujishima, “TiO2 photocatalysis: a historical overview and future prospects.” Journal of Applied Physics, 44 (2005) 8269.
[7] M. Mehrjouei, S. Müller, D. Möller, “A review on photocatalytic ozonation used for the treatment of water and wastewater.” Chemical Engineering Journal, 263 (2015) 209.
[8] A. Rothschild, A. Evakov, Y. Shapira, N. Ashkenasy, Y. Komen, “Surface photovoltage spectroscopy study of reduced and oxidized nanocrystalline TiO2 films.” Surface Sciences, 532 (2003) 420.
[9] E. G. J. Wijnhoven, W. L. Vos, “Preparation of photonic crystals made of air spheres in titania.” Science 281 (1998) 802.
[10] A. Richel, N. P. Johnson, D. McComb, “Observation of Bragg reflection in photonic crystals synthesized from air spheres in a titania matrix.” Applied Physics Letters, 76 (2000) 1816.
[11] U. Wang, R. T. GUO, Z. X. BI, X. Chen, X.HU, W. Pan. “A review on TiO2-x-based materials 745 for photocatalytic CO2 reduction.” Nanoscale, 14 (2022) 11512.
[12] J. Parkash, J. Cho, Y. Kumar Mishra, “Photocatalytic TiO2 nanomaterials as potential antimicrobial and antiviral agents: Scope against blocking the SARS-COV-2 spread” Micro and Nano Engineering, 14 (2022) 100100.
[13] A. R. Armstrong, J. Ganales, R. Garcia, P. G. Bruce, “Lithium‐Ion Intercalation into TiO2‐B Nanowires.” Advanced Materials, 17 (2005) 862.
[14] U. Bach, D. Lupo, M. P. Comte, J. E. Moser, F. Weissortel, J. Salbeacl, H. Spreitzer, M. Gratzel, “Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies.” Nature, 395 (1998) 583.
[15] M. Shooshtari, J. Salehi, “An electronic nose based on carbon nanotube-titanium dioxide hybrid nanostructures for detection and discrimination of volatile organic compounds” Sensors and Actuators B: Chemical, 357 (2022) 131418.
[16] K Y. Dong, Y. K. Dong, “Novel approach to the fabrication of macroporous polymers and their use as a template for crystalline titania nanorings.” Nano Letters, 3 (2003) 207.
[17] G. H. Du, Q. Chen, R. C. Che, Z. Y. Yuan, L. M. Peng, “Preparation and structure analysis of titanium oxide nanotubes.” Applied Physics Letters, 79 (2001) 3702.
[18] J. M. Wu, H. Shin, W. T. Wu, Y. K. Tseng, I. C. Chen. “Thermal evaporation growth and the luminescence property of TiO2 nanowires.” Journal of Crystal. Growth, 281 (2005) 384.
[19] K. Huo, X. Zhng, L. Hu, X. Sun, J. Fu, P. k. Chu, “One-step growth and field emission properties of quasialigned TiO2 nanowire/carbon nanocone core-shell nanostructure arrays on Ti substrates” Applied Physics Letters, 93 (2008) 013105.
[20] Y. wang, H. Yang, H. Xu, “DNA-like dyesensitized solar cells based on TiO2 nanowirecovered nanotube bilayer film electrodes.” Materials Letters, 64 (2010) 164.
[21] J. T. Mazumder, R. Mayengbam, A. Nath, M. B. Sarkar, “Investigation of structural, optical and electrical properties of TiO2 thin film-nanowirebased device for photodetector application.” Optical materials, 133 (2022) 112936.
[22] T. Shibata, H. Irie, D. A. Try, K. Hashimato, “Effect of Residual Stress on the Photochemical Properties of TiO2 Thin
Films.” The Journal of Physical Chemistry C, 113 (2009) 12811.
[23] N. Rahmani, R. Dariani, “Strain-related phenomena in TiO2 nanostructures spin-coated on porous silicon substrate.” Superlattices and Microstructures, 85 (2015) 504.
[24] A. Kumawat, S. Chattopadhyay, K. Prakash Misra, R. D. K. Misra, P. Kumari, “Micro-strain governed photoluminescence emission intensity of sol-gel spin coated Eu doped ZnO thin films.” Thin Solid Films, 761(2022) 139521.
[25] R. S. Dariani, Z. Nafari Qaleh, Thin Solid Films, “Microstructure characterization of TiO2 nanowires fabricated by thermal evaporation process.” 542 (2013) 192.
[26] S. Ramezani Sani, A. Sanei, Nanomaterials, “Microstructure Characterization of TiO2 Nanowires by Hydrothermal Method.” 44 (2020) 223.
[27] G. Madhu, Vipin C. Bose, K. Maniammal, A. S. Aiswarya Raj, V. Biju, “Microstrain in nanostructured nickel oxide studied using isotropic and anisotropic models.” Physica B, 421 (2013) 87.
[28]. G. K. Williamson, W. H. Hall, “X-ray line broadening from filed aluminium and wolfram.” Acta Metallurgica, 1 (1953) 22.
[29] W. C. Elmore, M. A. Heald, Physics of Waves, McGraw-Hill Book Company, USA, 1969.
[30] K. Keis and A. Roos, “Optical characterization of nanostructured ZnO and TiO2 films.” Optical Materials, 20 (2002) 35
Ramezani Sani et al./Journal of Interfaces, Thin films, and Low dimensional systems 7 (2) Winter & Spring (2024) 739-746
746
[31] L. Grabner, S. E. Stokowski, W. S. Brower, “NoPhonon 4T2g−4A2g Transitions of Cr3+ in TiO2.” Physical Review B, 2 (1970) 590.
[32] Z. K. Tang et al,, “Room-temperature ultraviolet laser emission from self-assembled ZnO microcrystallite thin films” Appled Physics Letters, 72 (1998) 3270.
[33] S. Shionoya, W. M. Yen (Eds.), Phosphor Handbook, Chemical Rubber, Cleveland, 1999.
[34]. Yan Cong, S. Bin Li, Shumei Yue, and Di Fan, “Effect of Oxygen Vacancy on Phase Transition and Photoluminescence Properties of Nanocrystalline Zirconia Synthesized by the One-Pot Reaction.” The Journal of Physical Chemistry C, 113 (2009) 13974