بهبود سطح PMMA با استفاده از لیزر نانوثانیه ماوراءبنفش و مادون قرمز: اثرات مورفولوژیکی مشابه

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه فیزیک، دانشگاه علم و صنعت ایران، تهران، ایران

2 پژوهشکده فوتونیک و فناوری‌های کوانتومی، پژوهشگاه علوم و فنون هسته‌ای، سازمان انرژی اتمی، تهران، ایران

چکیده

مهندسی سطح مواد پلیمری برای بهبود خواص آنها در کاربردهای مختلف ضروری است. در این مطالعه، ما تشکیل ساختارهای مورفولوژیکی مشابه را بر روی سطح پلی متیل متاکریلات (PMMA) به دنبال تابش لیزرهای نانوثانیه فرابنفش (UV) و مادون قرمز (IR) بررسی می‌کنیم. بالاتر از آستانه فرسایش، و تحت شرایط تابش خاص، هر دو تابش UV و IR منجر به تشکیل منافذ ریز به دلیل استرس حرارتی و ناخالصی‌ها می‌شوند. از سویی دیگر، تابش نمونه‌ها ابتدا در یک شاریدگی بالا و سپس زیر آستانه فرسایش، با طول موج UV، منجر به تشکیل ساختارهای ناهموار می‌شود، که با نانو کره‌هایی که پس از تابش IR تشکیل می‌شوند، مقایسه می گردند. یافته‌های ما بینش‌هایی را در مورد تغییرات سطحی ناشی از لیزر در پلیمرها ارائه می‌دهد و به توسعه تکنیک‌های مهندسی سطح کنترل‌شده کمک می‌کند.

کلیدواژه‌ها

موضوعات

 [1] H. Pazokian et al., "Fabrication of multiscale structures on polymethylmethacrylate following pulsed CO2 laser irradiation." Optical  Engineering, 57 (2018) 125103-125103.
[2] T. Lippert, "Interaction of photons with polymers: From surface modification to ablation." Plasma processes and polymers, 2 (2005) 525-546.
[3] C. Umm-i-Kalsoom et al., Effect of excimer laser fluence on the surface structuring of Ti under vacuum condition." Journal of Laser Applications, 26 (2014) 022003.
[4] N. Stankova et al., Optical properties of polydimethylsiloxane (PDMS) during nanosecond laser processing.” Applied Surface Sciences, 374 (2016) 9610.
[5] M. Huang et al., Large area uniform nanostructures fabricated by direct femtosecond laser ablation.” Optics Express, 16 (2008) 1935419365.
[6] Y.K. Hsieh et al., "Direct micromachining of microfluidic channels on biodegradable materials using laser ablation." Polymers, 9 (2017) 242. 
[7] R.G. Hunsperger, Integrated Optics, Theoryand Technology, 1981.
[8] H. Chen et al., "The Fabrication of Photonic Crystal Microchip with Controllable Wettability and SERS Activity based on Surface Roughness for Trace Organic Compounds Determination." Advanced Materials Interfaces, 9 (2022) 2102178.
[9] Y. Sun et al., "Flow boiling enhancement of FC-72 from microporous surfaces in minichannels." Experimental thermal and fluid science, 35 (2011) 1418-1426.
[10] M. Castro-Mora et al., "Bacterial anti-adhesive films of PDMS coated with microstructures of 
 biogenic silica rosettes extracted from pineapple peels residues." Surfaces and Interfaces, 30 (2022) 101881.
[11] D. Bäuerle, Chemical processing with lasers, Vol. 1, Springer Science & Business Media, 2013.
[12] M. Q. Jiang et al., "Explosive boiling of a metallic glass superheated by nanosecond pulse laser ablation." Applied physics letters, 106 (2015) 021904.
[13] E. Rebollar et al., "Laser induced periodic surface structures on polymer films: From fundamentals to applications." European Polymer Journal, 73 (2015) 162-174.
[14] M. Ehrhardt et al., "Guiding of LIPSS formation by excimer laser irradiation of pre-patterned polymer films for tailored hierarchical structures.", Applied Surface Science, 506 (2020) 144785.
[15] J. Lawrence et al., "Modification of the wettability characteristics of polymethyl methacrylate (PMMA) by means of CO2, Nd: YAG, excimer and high-power diode laser radiation." Materials Science and Engineering: A, 303 (2001) 142-149.
[16] M. Vesal et al., "Investigation of irradiation parameters on fluid flow in microchannels fabricated on polymethyl methacrylate by a KrF laser." Optik, 262 (2022) 169358.
[17] I. Paun et al., "Nanosecond and femtosecond UV laser ablation of polymers: Influence of molecular weight." Applied surface science, 255 (2009) 9856-9860.
[18] H. Pazokian et al., "Review of the biocompatibility and blood compatibility properties of polyethersulfone film modified by the excimer and CO2 lasers." Laser Physics, 24 (2014), 066001.
[19] T. Wu et al,, "Femtosecond laser textured porous nanowire structured glass for enhanced thermal imaging." Chinese Optics Letters, 20 (2022), 033801.
[20] K. Yin et al., "Solar-driven thermal-wind synergistic effect on laser-textured superhydrophilic copper foam architectures for ultrahigh efficient vapor generation." Applied Physics Letters, 118 (2021) 211905.
[21] Z. Wu et al., "Recent advances in femtosecond laser-structured Janus membranes with asymmetric surface wettability." Nanoscale, 13 (2021) 2209-2226.
[22] E. Akinlabi et al., " Advanced manufacturing techniques using laser material processing", IGI Global, 2016.
[23] M. Michel, A. Pique, K. Sugioka. Laser precision microfabrication. Springer, 2010.
[24] A. Khomenko et al., "Kinetics of Nanostructuring Processes of Material Surface under Influence of Laser Radiation." Symmetry, 12 (2020), 1914.
[25] Z. Liu et al., "Coupling effects of the number of pulses, pulse repetition rate and fluence during laser PMMA ablation." Applied surface science, 165 (2000) 303-308.
[26] A.Y. Malyshev et al., "Laser swelling model for polymers irradiated by nanosecond pulses." Quantum Electronics, 35 (2005) 825.
[27] M.Q. Jiang et al., "Explosive boiling of a metallic glass superheated by nanosecond pulse laser ablation." Applied physics letters, 106 (2015) 021904.
[28] D. Qi et al., "Investigations of morphology and formation mechanism of laser-induced annular/droplet-like structures on SiGe film." Optics express, 21 (2013) 9923-9930.