بهبود خواص آب دوستی غشای PVDF مبتنی بر لایه نازک با تابش پلاسما برای استفاده در نمک‌زدایی

نوع مقاله : مقاله پژوهشی

نویسنده

گروه فیزیک، دانشگاه تفرش، تفرش، ایران.

چکیده

پلی وینیلیدین فلوراید (PVDF) یکی از موادی است که توانایی زیادی در تشکیل غشاء دارد، اما به دلیل آبگریز بودن، استفاده از آن در غشاهای نانوفیلتراسیون مشکل ساز است. راه حل پیشنهادی برای حل مشکل آب گریزی PVDF تابش پلاسمای نیتروژن است. در این تحقیق، تأثیر اصلاح ویژگی‌های سطحی غشاء PVDF توسط تابش پلاسمای N2 بر عملکرد فیلتراسیون بررسی شد. برای این منظور، غشاهای اصلاح شده توسط آنالیزهای SEM، FT-IR، AFM و CA مورد ارزیابی قرار گرفتند و با غشای کنترل مقایسه شدند. با افزایش تدریجی قدرت اعمالی پلاسمای تابیده شده بر روی سطح غشاها، خواص آب دوست و عملکرد غشاهای اصلاح شده بهبود یافت. نتایج حاکی از بهبود در رد شار و نرخ بازیابی در غشای اصلاح‌شده تحت تابش پلاسمای N2 با خواص فوق آبدوست در مقایسه با غشای PVDF خالص است. بر اساس نتایج آزمایش‌ها، بهترین نرخ بازیابی شار 8/11 و رد 94 درصد را می‌توان برای غشای تابش‌شده با توان اعمالی 120 وات به‌دست آورد.

کلیدواژه‌ها

موضوعات

[1] R. Singh, “Hybrid Membrane Systems for Water Purification: Technology, Systems Design and
Operations.” Elsevier (2006).
[2] N. Li, A. Fane, W. Ho, T. Matsuura, “Advanced membrane technology and applications.” John
Wiley & Sons (2011).
[3] S. Nunes, K. Peinemann, “Membranes for food applications.” John Wiley & Sons (2011).
[4] F. Liu, N. Hashim, Y. Liu, M. Abed, K. Li, “Progress in the production and modification of PVDF membranes.” Journal of Membrane Science, 375 (2011) 1.
[5] J. Lee, J. Jung, Y. Cho, S. Yadav, K. Baek, H. Park, S. Hong, C. Koo, “Fouling-tolerant nanofibrous polymer membranes for water treatment.” ACS applied materials & interfaces, 6 (2014) 14600.
[6] S. Yao, Y. Li, Z. Zhou, H. Yan, “Graphene oxideassisted preparation of poly (vinyl alcohol)/carbon nanotube/reduced graphene oxide nanofibers with high carbon content by electrospinning technology.” Royal Society of Chemistry, 5 (2015) 91878.
[7] D. Rana, T. Matsuura, “Surface modifications for antifouling membranes.” Chemical reviews, 110 (2010) 2448.
[8] X. Qu, P. Alvarez, Q. Li, “Applications of nanotechnology in water and wastewater treatment.” Asian Journal of Water, Environment and Pollution, 16 (2019) 81.
[9] D. Chen, H. Feng, J. Li, “Graphene oxide: preparation, functionalization, and electrochemical applications.” Chemical reviews, 112 (2012) 6027.
[10] S. Homaeigohar, M. Elbahri, “Novel compaction resistant and ductile nanocomposite nanofibrous microfiltration membranes.” Journal of colloid and interface science, 372 (2012) 6.
[11] S. Zinadini, A. Zinatizadeh, M. Rahimi, V. Vatanpour, H. Zangeneh, “Preparation of a novel antifouling mixed matrix PES membrane by embedding graphene oxide nanoplates.” Journal of Membrane Science, 453 (2014) 292.
[12] W. Jang, J. Yun, K. Jeon, H. Byun, “PVdF/graphene oxide hybrid membranes via electrospinning for water treatment applications.” Royal Society of Chemistry, 5 (2015) 46711.
[13] T. Nguyen, F. Roddick, L. Fan, “Biofouling of water treatment membranes.” Membranes, 2 (2012) 804.
[14] Q. Wang, Z. Wang, J. Wang, Z. Wu, “Antifouling behaviours of PVDF/nano-TiO2 composite membranes revealed by surface energetics and quartz crystal microbalace monitoring.” Royal Society of Chemistry, 4 (2014) 43990.
[15] D. Rana, T. Matsuura, “Surface modifications for antifouling membranes.” Chemical Review, 110 (2010) 2448.
[16] T. Chen, A. Soroush, M. Rahaman, “Highly Hydrophobic Electrospun Reduced Graphene Oxide/Poly (vinylidene fluoride-cohexafluoropropylene) Membranes for Use in Membrane Distillation.” Industrial and Engineering
Chemistry Research, 57 (2018) 14535.
[17] B. Bai, X. Yang, R. Tian, X. X. Wang, H. Wang, “A high efficiency solar steam generation system with using residual heat to enhance steam escape.” Desalination, 491 (2020).
[18] H. Li, W. Shi, X. Zeng, S. Huang, H. Zhang, and X. Qin, “Improved desalination properties of hydrophobic GO-incorporated PVDF electrospun nanofibrous composites for vacuum membrane distillation.” Separation and Purification
Technology, 230 (2020).
[19] V. Kochkodan, D. Johnson, N. Hilal, “Ploymeric membranes: Surface modification for minimizing (bio) colloidal fouling.” Advances of Colloid Interface Sciences, 206 (2014) 116.
[20] R. Damodar, S. You, H. Chou, “Study the selfcleaning, antibacterial and photocatalytic properties of TiO2 entrapped PVDF membranes.” Journal of Hazardous Materials, 172 (2009) 1321.
[21] B. Farokhi, M. Rezaei, Z. Kiamehr, S. Hosseini, “A new approach to provide high water permeable polyethersulfone based nanofiltration membrane by Air plasma treatment.” International Journal of Engineering, 32 (2019) 354.
[22] Z. Kiamehr, B. Farokhi, S. Hosseini, “Development of a highly-permeable thin-filmbased nanofiltration membrane by using surface treatment with Air-Ar plasma.” Korean Journal of Chemical Engineering, 38 (2021) 114.
[23] Z. Kiamehr, S. Farahani, B. Farokhi, S. Hosseini, “Investigation the effect of Ar-Air plasma treatment on separation performance of nanofiltration membrane: influence of time, power and composition of plasma.” Journal of Petroleum
Research, 31 (2021) 105.
[24] Z. Kiamehr, “Modification of a Highly Permeable Thin-Film-Based Nanofiltration Membrane (PVC) to Increase Efficiency and Separation by Air Plasma Treatment.” IEEE Transactions on Plasma Science, 50 (2022) 2952.
[25] X. Shen, et.al, “Study on the hydrophobic modification of PVDF membrane by lowtemperature plasma etching in combination with grafting in supercritical carbon dioxide.” Vacuum, 209 (2023) 111782.
[26] T. Le, et.al, “Enhancing dye wastewater treatment efficiency in ozonation membrane contactors by
chloro– and fluoro–organosilanes’ functionality on hydrophobic PVDF membrane modification.” Separation and Purification Technology, 288 (2022) 120711.
[27] M. Zięba, et.al, “Nitrogen plasma modification boosts up the hemocompatibility of new PVDFcarbon nanohorns composite materials with potential cardiological and circulatory system implants application.” Biomaterials Advances, 138
(2022) 212941.
[28] M. Muller and C. Oher, “Plasma aminofunctionalisation of PVDF microfiltration membranes: comparison of the in plasma modifications with a grafting method using ESCA and an amino-selective fluorescent probe.” Surface
and Coatings Technology, 119 (1999) 802.
[29] N. Vandencasteele, D. Merche, F. Reniers, “XPS and contact angle study of N2 and O2 plasmamodified PTFE, PVDF and PVF surfaces.” surface and interface analysis, 38 (2006) 526.
[30] Y. Teow, A. Ahmad, J. Lim, B. Ooi, “Preparation and characterization of PVDF/ TiO2 mixed matrix membrane via in situ colloidal precipitation method.” Desalination, 295 (2012) 61.
[31] M. Tavakolmoghadam, F. Rekabdar, M. Hemmati, T. Mohammadi, “Poly(vinylidene fluride) membrane preparation and characterization: Effects of mixed solvents and PEG molecular weight.” Journal of Petroleum Science and Technology, 6 (2016) 11.
[32] K. Khuble, C. Feng, T. Matsuura, “Synthetic polymeric membranes characterization by Atomic Force Microscopy.” Springer Laboratory Manuals in Polymer Science, (2007).
[33] M. Razzaghi, A. Safekordi, M. Tavakolmoghadam, F. Rekabdar, M. Hemmati, “Morphological and separation performance study of PVDF/CA blend membranes.” Journal of Membrane Science, 470 (2014) 547.
[34] J. Kim, B. Bruggen, “The use of nanoparticles in polymeric and ceramic membrane structures: Review of manufacturing procedures and performance improvement for water treatment.” Environmental Pollution, 158 (2010) 2335.
[35] P. Clech, B. Jefferson, “Critical flux determination by the flux-step method in a submerged membrane bioreactor.” Journal of Membrane Science, 227 (2003) 81.
[36] Y. Han, Y. Jiang, C. Gao, “High-flux graphene oxide nanofiltration membrane intercalated by carbon nanotubes.” ACS Applied Materials Interfaces, 7 (2015) 8147.
[37] S. Subramanian, R. Seeram, “New directions in nanofiltration applications-are nanofibers the right materials as membranes in desalination.” Desalination, 308 (2013) 198.