[1] A.K. Geim, K.S. Novoselov, "The rise of graphene", Nat. Mater. 6 (2007) 183–191.
[2] A.K. Geim, "Graphene: Status and Prospects", Science (80-. ). 324 (2009) 1530–1534.
[3] C. Lee et al, "Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene", Science (80-. ). 321 (2008) 385–388.
[4] L. Razzaghi et al, "Effect of graphene and carbon-nitride nanofillers on the thermal transport properties of polymer nanocomposites: A combined molecular dynamics and finite element study", Phys. Rev. E. 103 (2021) 013310.
[5] R. Shrestha et al, "Dual-mode solid-state thermal rectification", Nat. Commun. 11 (2020) 4346.
[6] F. Yousefi et al, "Thermal conductivity and thermal rectification of nanoporous graphene: A molecular dynamics simulation", Int. J. Heat Mass Transf. 146 (2020) 118884.
[7] X. Yang et al, "Ultrahigh Thermal Rectification in Pillared Graphene Structure with Carbon Nanotube-Graphene Intramolecular Junctions", ACS Appl. Mater. Interfaces. 9 (2017) 29–35.
[8] F. Yousefi et al, "Thermal rectification and interfacial thermal resistance in hybrid pillared-graphene and graphene: a molecular dynamics and continuum approach", Nanotechnology. 31 (2020) 285707.
[9] O. Farzadian et al, "Phonon thermal rectification in hybrid graphene-$\mathrm{C_{3}N}$: a molecular dynamics simulation", Nanotechnology. 31 (2020) 485401.
[10] O. Farzadian et al, "Graphene-carbon nitride interface-geometry effects on thermal rectification: a molecular dynamics simulation", Nanotechnology. 32 (2021) 215403.
[11] L. Kiani et al, "Phonon modes contribution in thermal rectification in graphene-C3B junction: A molecular dynamics study", Phys. E Low-Dimensional Syst. Nanostructures. 131 (2021) 114724.
[12] A. Saeedi et al, "Thermal rectification of a single-wall carbon nanotube: A molecular dynamics study", Solid State Commun. 179 (2014) 54–58.
[13] M. Romero-Bastida, M. Lindero-Hernández, "Thermal rectification in three-dimensional mass-graded anharmonic oscillator lattices", Phys. Rev. E. 104 (2021) 044135.
[14] A. Tavakoli et al, "Experimental evaluation of thermal rectification in a ballistic nanobeam with asymmetric mass gradient", Sci. Rep. 12 (2022) 7788.
[15] F. Yousefi et al, "Non-equilibrium molecular dynamics study on radial thermal conductivity and thermal rectification of graphene", Mol. Simul. 45 (2019) 646–651.
[16] X.-K. Chen et al, "Thermal Rectification in Asymmetric Graphene/Hexagonal Boron Nitride van der Waals Heterostructures", ACS Appl. Mater. Interfaces. 12 (2020) 15517–15526.
[17] A. Yousefzadi Nobakht et al, "Thermal rectification via asymmetric structural defects in graphene", Carbon N. Y. 132 (2018) 565–572.
[18] X. Cartoixà et al, "Thermal Rectification by Design in Telescopic Si Nanowires", Nano Lett. 15 (2015) 8255–8259.
[19] D.C. Elias et al, "Control of Graphene’s Properties by Reversible Hydrogenation: Evidence for Graphane", Science (80-. ). 323 (2009) 610–613.
[20] A.K. Singh, B.I. Yakobson, "Electronics and Magnetism of Patterned Graphene Nanoroads", Nano Lett. 9 (2009) 1540–1543.
[21] A. Rajabpour et al, "Interface thermal resistance and thermal rectification in hybrid graphene-graphane nanoribbons: A nonequilibrium molecular dynamics study", Appl. Phys. Lett. 99 (2011) 051917.
[22] B. Mortazavi et al, "Nanoporous C3N4, C3N5 and C3N6 nanosheets; novel strong semiconductors with low thermal conductivities and appealing optical/electronic properties", Carbon N. Y. 167 (2020) 40–50.
[23] B. Mortazavi et al, "Machine-learning interatomic potentials enable first-principles multiscale modeling of lattice thermal conductivity in graphene/borophene heterostructures", Mater. Horizons. 7 (2020) 2359–2367.
[24] S. Plimpton, "Fast Parallel Algorithms for Short-Range Molecular Dynamics", J. Comput. Phys. 117 (1995) 1–19.
[25] D.W. Brenner et al, "A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons", J. Phys. Condens. Matter. 14 (2002) 783–802.
[26] T. Schneider, E. Stoll, "Molecular-dynamics study of a three-dimensional one-component model for distortive phase transitions", Phys. Rev. B. 17 (1978) 1302–1322.
[27] W.G. Hoover, "Canonical dynamics: Equilibrium phase-space distributions", Phys. Rev. A. 31 (1985) 1695–1697.
[28] S. Nosé, "A unified formulation of the constant temperature molecular dynamics methods", J. Chem. Phys. 81 (1984) 511–519.
[29] M. Khalkhali et al, "Thermal transport in silicene nanotubes: Effects of length, grain boundary and strain", Int. J. Heat Mass Transf. 134 (2019) 503–510.
[30] H. Budd, J. Vannimenus, "Thermal Boundary Resistance", Phys. Rev. Lett. 26 (1971) 1637–1640.