اثر تغییرات دما و ناخالصی تک اتم کربن بر ویژگیهای ترموالکتریکی نانو لوله نیترید بور دو سر بسته (6،0)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه فیزیک، دانشگاه آزاد اسلامی واحد آیت اله آملی، آمل، ایران

2 گروه فیزیک، دانشگاه آزاد اسلامی واحد کاشان، کاشان، ایران

3 گروه فیزیک، دانشگاه آزاد اسلامی واحد تهران شمال، تهران، ایران

چکیده

در این مقاله، ویژگیهای ترموالکتریکی نانو لوله نیترید بور دو سر بسته (6،0) در حالت بدون ناخالصی و ناخالصی تک اتم کربن به جای اتمهای بور و نیتروژن در مرکز ، سمت چپ و راست این نانولوله در رنج انرژی 5.5- تا 5.5+ الکترون ولت و دماهای 200، 300، 500، 700، 900، 1100 و 1300 کلوین مورد بررسی قرار گرفته است. نتایج نشان می دهد با افزایش دما و ایجاد ناخالصی، باند گپ تحت تاثیر قرار گرفته و به طور جزیی کاهش یافته است. بیشترین کاهش در باند گپ و کمترین کاهش در ارتفاع پیک مربوط به دمای 1300 کلوین می باشد. با افزایش دما تعداد پیکها کاهش یافته است که نشان می دهد تحرک الکترونها و حفره ها افزایش یافته و جایگزیدگی آنها کاهش یافته است. همانطور که دما افزایش می یابد، ارتفاع پیکهای رسانش گرمایی افزایش می یابد. اما رسانش گرمایی در رنج 10-9 در مقیاس نانو می باشد که عدد کوچکی می باشد. ضریب شایستگی با افزایش دما افزایش یافته است و بیشترین افزایش مربوط به دمای 1300 کلوین می باشد. مقادیر ضریب شایستگی مخصوصاً در دماهای بالا بیشتر از 1 می باشد که نشان می دهد نانولوله نیترید بور دو سر بسته (6،0) شایسته برای انتخاب به عنوان ماده ترموالکتریک می باشد.

موضوعات

[1] A.M. Yadollahi et al., “Effect of temperature changes on thermoelectric properties of the two sided-closed single-walled BNNTs (6, 3).” Journal of Interfaces, Thin Films, and Low dimensional systems (JITL), 5(1) (2022) 421-427. DOI: 10.22051/jitl.2022.40200.1072.
[2] S. LeBlanc, “Thermoelectric generators: Linking material properties and systems engineering for waste heat recovery applications.” Sustainable Materials and Technologies, 1 (2014) 26-35.
[3] G.J. Snyder, E.S. Toberer, “Complex thermoelectric materials.” Nature materials, 7(2) (2008) 105-114.
[4] M. Yaghobi et al., “Electronic transport through a C60–n Xn(X^N and B) molecular bridge.” Molecular Physics 109 (2011) 1821.
[5] C. Joachim et al., “Analysis of low-voltage I (V) characteristics of a single cgo molecule.” Europhys. Lett. 30 (1995) 409.
[6] Moh. Yaghobi et al., “Magnetic and structural properties of BNC nanotubes.” Mol. Phys 117(3) (2019) 260-266. DOI: 10.1080/00268976.2018.1508783.
[7] A. Minnich et al., “Bulk nanostructured thermoelectric materials: current research and future prospects.” Energy & Environmental Science, 2(5) (2009) 466-479.
[8] M. Weber et al., “Novel and Facile Route for the Synthesis of Tunable Boron Nitride Nanotubes Combining Atomic Layer Deposition and Annealing Processes for Water Purification.” Advanced Materials Interfaces 5(16) (2018) 1800056.
[9] S. Iijima, “Helical microtubules of graphitic carbon.” Nature 354 (6348) (1991) 56.
[10] A.M. Marconnet et al., “Thermal conduction phenomena in carbon nanotubes and related nanostructured materials.” REVIEWS OF MODERN PHYSICS 85 (2013) 1296-1327.
[11] J.X. Zhao and B.Q. Dai, “DFT studies of electro-conductivity of carbon-doped boron nitride nanotube.” Mater. Chem. Phys 88 (2004) 244-249. https://doi.org/10.1016/j.matchemphys.2003. 10. 018.
[12] A. Rubio et al., “Theory of graphitic boron nitride nanotubes.” Phys. Rev. B 49(7) (1994) 5081.
[13] N.G. Chopra et al., “Boron nitride nanotubes.” Science, 269(5226) (1995) 966-967.
[14] H.J. Xiang et al., “First-principles study of small-radius singlewalled BN nanotubes.” Phys. Rev. B 68 (3) (2003) 035427.
[15] X. Chen et al., “Mechanical strength of boron nitride nanotube-polymer interfaces.” Appl. Phys. Lett. 107 (25) (2015) 253105.
[16] C.W. Chang et al., “Isotope effect on the thermal conductivity of boron nitride nanotubes.” Phys. Rev. Lett. 97 (8) (2006) 085901.
[17] Y. Huang et al., “Growth mechanism and properties of highly pure ultrafine boron nitride nanotubes with diameters of sub-10 nm.” Nanotechnology 22 (14) (2011) 145602.
[18] C. Zhi et al., “Perfectly dissolved boron nitride nanotubes due to polymer wrapping.” J. Am. Chem. Soc. 127 (46) (2005) 15996.
[19] S.A. Thibeault et al., “Nanomaterials for radiation shielding.” MRS Bull. 40 (10) (2015) 836.
[20] J.H. Kang et al., “Multifunctional Electroactive Nanocomposites Based on Piezoelectric Boron Nitride Nanotubes.” ACS Nano 9 (12) (2015) 11942.
[21] C. Tang et al., “Fluorination and Electrical Conductivity of BN Nanotubes.” J. Am. Chem. Soc. 127 (2005) 6552–3.
[22] X. Bai et al., “Deformation-Driven Electrical Transport of Individual Boron Nitride Nanotubes.” Nano Lett. 7 (2007) 632–7.
[23] X. Blasé et al., “Stability and band gap constancy of boron nitride nanotubes.” Europhys Lett 8 (1994) 335.
[24] A. M. Yadollahi et al.,”Thermoelectric properties of two sided-closed single-walled boron nitride nanotubes (6, 3).” Indian Journal of Physics. 96 (2022) 3493–3500. https://doi.org/10.1007/ s12648 - 021 -02255-2.
[25] D.A. Papaconstantopoulos and M.J. Mehl, “The Slater–Koster tight-binding method: a computationally efficient and accurate approach.” J. Phys.: Condens. Matter 15 (2003) R413–R440.
[26] D. Porath et al., “Single electron tunneling and level spectroscopy of isolated C60 molecules.” Phys. 81 (1997) 2241.
[27] L. Song, “Large scale growth and characterization of atomic hexagonal boron nitride layers.” Nano Lett 10 (2010) 3209–3215. https://doi.org/10.1021/nl1022139.
[28] A.M. Yadollahi et al., “Effect of impurity and temperature changes on the thermoelectric properties of the (6, 3) two sided-closed single-walled boron nitride nanotubes ((6, 3) TSC-SWBNNTs).” Journal of Therotical and Applied Physics (JTAP) 16(3) (2022) 162230 (1-11).
[29] J. Schneider et al., “Anders Blom and Kurt Stokbro, ATK-ForceField: a new generation molecular dynamics software package.” Modelling Simul. Mater. Sci. Eng. 25 (2017) 085007.
[30] P. Zhao et al., “Rectifying behavior in nitrogen-doped zigzag single-walled carbon nanotube junctions.” Solid State Communications 152 (2012) 2040–2044.
[31] M. Wang et al., “Spin transport properties in Fe-doped graphene/hexagonal boron-nitride nanoribbons heterostructures” Physics Letters A. 383(18) (2019) 2217-2222.
[32] T. Markussen et al., “Surface decorated silicon nanowires: a route to high-ZT thermoelectrics.” Physical Review Letters 103 (2009) 055502(4).
[33] C. Rui et al., “Transport properties of B/P doped graphene nanoribbon field-effect transistor.” Materials Science in Semiconductance Processing 130 (2021) 105826.
[34] H. Alama and S. Ramakrishnab, “A review on the enhancement of figure of merit from bulk to nano-thermoelectric materials.” Nano Energy 2(2) (2013) 190-212.
[35] T.M. Tritt,” Thermoelectric Materials: Principles, Structure, Properties, and Applications.” Elsevier, Encyclopedia of Materials: Science and Technology 2 (2002) 1-11. http://dx.doi.org/10.1016/b0-08-043152-6/01822-2.
[36] T. Markussen et al., “Surface-Decorated Silicon Nanowires: A Route to High-ZT Thermoelectrics.” Physical Review Letters 103 (2009) 055502(4).
[37] M.R. Roknabadi et al, “Electronic and optical properties of pure and doped boron-nitride nano.” Physica. B 410 (2013) 212–216. https://doi.org/10.1016/j. physb.2012.10.033.
[38] R.Sadeghi et al., “Thermoelectric properties of zigzag single-walled Carbon nanotubes and zigzag single-walled Boron Nitride nanotubes (9, 0).” IJND 13 (3) (2022) 311-319. DOI: 10.22034/ IJND.2022 .1951622.2118.