تأثیر فشار هیدرواستاتیک بر میزان بازترکیبی اوگر در دیود لیزر با چاه کوانتم چند گانه ‏‎ InGaN/GaN ‎

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه فیزیک، دانشگاه آزاد اسلامی واحد خوی، خوی، ایران

چکیده

در این مطالعه، یک مدل عددی برای تجزیه و تحلیل میزان بازترکیبی اوگر در دیود های لیزری با چاه کوانتم ‏چند گانه ‏‎ C-plane InGaN/GaN ‎تحت فشار هیدرواستاتیک استفاده شده است ‏‎. ‎برای به دست آوردن ‏مقادیر ویژه انرژی و توابع ویژه مربوط به‎ ‎دیود های لیزری ‏‎ ‎از تکنیک‌های دیفرانسیل محدود استفاده شد و ‏حالت‌های ویژه حفره ها با استفاده از روش‎6‎×6 k.p ‎تحت فشار هیدرواستاتیک اعمال شده محاسبه شد ه است ‏‎. ‎مشخص شد که تغییر فشار تا 10 گیگا پاسکال، چگالی حامل را به ترتیب تا‎ ‎0.75×10^19 cm-3 ‎و‎ ‎‎0.56×10^19cm-3 ‎ ‎برای حفره‌ها و الکترون‌ها و شکاف باند مؤثر را افزایش می‌دهد‎. ‎بر اساس نتیجه، می‌تواند ‏انرژی بستگی اکسایتون را کاهش دهد، نرخ میدان الکتریکی را تا‎ ‎0.77MV/cm ‎و نرخ نوترکیبی اوگر را به ‏میزان ‏cm^3s^-1‎‏ 27^10×0.6 ترتیب در نواحی چاه‌های کوانتومی چندگانه کاهش دهد‎. ‎همچنین محاسبات ‏نشان داد که سرعت نوترکیبی اوگر حفره-حفره-الکترون‎ (CHHS) ‎و الکترون-الکترون-حفره‎ (CCCH) ‎بیشترین سهم را در نرخ نوترکیبی اوگر داشته است‎. ‎مطالعات ما بینش دقیق تری را در مورد منشاء افت ‏میزان بازترکیبی اوگر تحت فشار هیدرواستاتیک در‎ ‎‏ دیود های لیزری مبتنی بر‎ InGaN ‎ارائه می کند.‏

کلیدواژه‌ها

موضوعات

[1] David, N. G. Young, C. Lund, M. D. Craven, Compensation between radiative and Auger recombinations in III-nitrides: The scaling law of separated-wavefunction recombinations. Appl. Phys. Lett. 115, 193502 (2019).
[2] K. Tan, W. Sun, J. J. WiererJr. N. Tansu, Effect of interface roughness on Auger recombination in semiconductor quantum wells, AIP Advances. 7, 035212 (2017).
[3] Steiauf, E. Kioupakis, C. G. Van de Walle, Auger Recombination in GaAs from First Principles, ACS Photonics, 1, 643−646 (2014).
[4] P. Han, C.H. Oh, D.G. Zheng, H. Kim, J.I. Shim, K. S. Kim, D. S. Shin, Analysis of nonradiative recombination mechanisms and their impacts on the device performance of InGaN/GaN light-emitting diodes, Jpn. J. Appl. Phys.54, 02BA01 (2015).
[5] Liu, C. Haller, Y. Chen, T. Weatherly, J.-F. Carlin, G. Jacopin, R. Butté, and N. Grandjean, Impact of defects on Auger recombination in c-plane InGaN/GaN single quantum well in the efficiency droop regime, Appl. Phys. Lett. 116, 222106 (2020).
[6] Kioupakis, P. Rinke, K. T. Delaney, C. G. Van de Walle, Indirect Auger recombination as a cause of efficiency droop in nitride light-emitting diodes, Appl. Phys. Lett, 98, 161107 (2011).
[7] Piprek, Efficiency droop in nitride-based light-emitting diodes, Phys. Status Solidi A. 207(10), 2217–2225 (2010).
[8] Auf der Maur, G. Moses, J. M. Gordon, X. Huang, Y. Zhao, E. A. Katz, Temperature and intensity dependence of the open-circuit voltage of InGaN/GaN multi-quantum well solar cells, Sol. Energy Mater Sol. Cells, 230 (2021) 111253.
[9] Piprek, F. Römer, B. Witzigmann, On the uncertainty of the Auger recombination coefficient extracted from InGaN/GaN light-emitting diode efficiency droop measurements, Appl. Phys. Lett, 106, 101101 (2015).
[10] -Y. Ryu, G.H. Ryu, C. Onwukaeme, B. Ma, Temperature dependence of the Auger recombination coefficient in InGaN/GaN multiple-quantum-well light-emitting diodes, Opt. Express, 28(19), 27459 (2020).
[11] Cheng, Z. Li, J. Zhang, X. Lin, D. Yang, H. Chen, S. Wu, S. Yao, Advantages of InGaN–GaN–InGaN Delta Barriers for InGaN-Based Laser Diodes, Nanomaterials, 11, 2070 (2021).
[12] Picozzi, R. Asahi, C. B. Geller, A. J. Freeman, Accurate First-Principles Detailed-Balance Determination of Auger Recombination and Impact Ionization Rates in Semiconductors, Phys. Rev. Lett, 89(19), 197601 (2002).
[13] S. Polkovnikov , G. G. Zegrya, Auger recombination in semiconductor quantum wells, Phys. Rev. B, 58(7), 4039-4056 (1998).
[14] Piprek, Efficiency Models for GaN-Based Light-Emitting Diodes: Status and Challenges, Materials, 13, 5174 (2020).
[15] M. McMahon, E. Kioupakis, S. Schulz, Atomistic analysis of Auger recombination in c-plane (In,Ga)N/GaN quantum wells: Temperature-dependent competition between radiative and nonradiative recombination, Phys. Rev. B, 105, 195307 (2022)
[16] Belmabrouk,, B. Chouchen , E. M. Feddi , F. Dujardin , I. Tlili , M. B. Ayed, M.Hichem Gazzah, Modeling the simultaneous effects of thermal and polarization in InGaN/GaN based high electron mobility transistors, Optik, 207 163883 (2020).
[17] X Huang et al, Piezo-Phototronic Effect in a Quantum Well Structure ACS Nano 10(5) 5145 (2016).
[18] K. Ridley, W. J. Schaff, and L. F. Eastman, Theoretical model for polarization superlattices: Energy levels and intersubband transitions, J. Appl. Phys, 94, 3972 (2003).
[19] Ambacher, J. Majewski, C. Miskys, et al, J. Phys. Condens. Matter, 14, 3399 (2002).
[20] Asgari, K. Khalili, Temperature dependence of InGaN/GaN multiple quantum well based high efficiency solar cell, Sol. Energy Mater Sol. Cells, 95, 3124–3129 (2011).
[21] Fiorentini, Evidence for nonlinear macroscopic polarization in III–V nitride alloy heterostructures, Appl. Phys. Lett. 80 1204 (2002).
[22] Perlin, L. Mattos, N. A. Shapiro, J. Kruger, W. S. Wong, T. Sands, Reduction of the energy gap pressure coefficient of  GaN due to the constraining presence of the sapphire substrate, J. Appl. Phys. 85 2385 (1999).
[23] J. Bala, A. J. Peter, C. W. Lee, Simultaneous effects of pressure and temperature on the optical transition energies in a Ga 0.7In 0.3N/GaN quantum ring, Chem. Phys. 495, 42–47(2017).
[24] L. Chuang, C. S. Chang, A band-structure model of strained quantum-well wurtzite semiconductors, Semicond. Sci. Technol. 12, 252–263 (1997).
[25] L. Chuang and C. S. Chang, k.p method for strained wurtzite semiconductors, Phys. Rev. B. 54(4), 2491-2504 (1996).
[26] Piprek and S. Nakamura, Physics of high-power InGaN/GaN lasers, IEE Proceedings – Optoelectronics, 149(4), 145–151 (2002).
[27] Yahyazadeh, Numerical Modeling of the Electronic and Electrical Characteristics of MultipleQuantum Well Solar Cells, J. Photonics Energy, 10(4), 045504 (2020).
[28] D. Andrew, E. O. O’Reilly, Theoretical study of Auger recombination in a GaInNAs 1.3 μm  quantum well laser structure, Appl. Phys. Lett. 84,182 (2004).
[29] Wang, P. V. Allmen, J.-P. Leburton, K. J. Linden, Auger Recombination in Long- Wavelength Strained-Layer Quantum-Well Structures, IEEE J. Quantum Electron, 31(5), 864-875 (1995).
[30] Asgari, M. Kalafi, L. Faraone, A quasi-two-dimensional charge transport model of AlGaN/GaN high electron mobility transistors (HEMTs), Physica E 28 491–499 (2005).
[31] W.-Ying, Effects of interface roughness on photoluminescence full width at half maximum in GaN/AlGaN quantum wells, Chin. Phys. B 23(11), 117803 (2014).
[32] Yahyazadeh. Effect of hydrostatic pressure on the radiative current density of InGaN/GaN multiple quantum well light emitting diodes. Opt Quant Electron, 53, 571 (2021).
[33] R Yahyazadeh, Z Hashempour, Numerical Modeling of Electronic and Electrical Characteristics of Al Ga N / GaN Multiple Quantum Well Solar Cells, J. Optoelectron. Nanostruct, 5(3), 81 (2020).
[34] H. Ha, S. L. Ban, Binding energies of excitons in a strained wurtzite GaN/AlGaN quantum well influenced by screening and hydrostatic pressure, J. Phys. Condens. Matter. 20, 085218 (2008).
[35] G. Rojas-Briseno, I. Rodriguez-Vargas, M. E. Mora-Ramos, J.C. Martínez-Orozco, “Heavy and light exciton states in c-AlGaN/GaN asymmetric double quantum wells,” Physica E. 124, (2020) 114248.
[36] P Harrison and A Valavanis Quantum Wells, Wires and Dots: Theoretical and Computational Physics of Semiconductor Nanostructures, 4th ed. (New York: John Wiley & Sons) (2016)
[37] Kasapoglu, H. Sari, N Balkan, Binding energy of excitons in symmetric and asymmetric coupled double quantum wells in a uniform magnetic field, Sci. Technol. 15, 219 (2000)
[38] G. Rojas-Briseño, J.C. Martínez-Orozco, M.E. Mora-Ramos, States of direct and indirect excitons in strained ‎zinc-blende GaN/InGaN asymmetric quantum wells, Superlattices Microstruct.112, 574-583 (2017). ‎
[39] Watson-Parris, M. J. Godfrey, P. Dawson, Carrier localization mechanisms in InxGa1−xN/GaN quantum wells, Phys. Rev. B. 83, 115321 (2011).
[40] Chouchen, M. H. Gazzah, A. Bajahzar, H. Belmabrouk, Numerical modeling of InGaN/GaN p-i-n solar cells under temperature and hydrostatic pressure effects, AIP Adv. 9, 045313 (2019).
[41] Jogai, Influence of surface states on the two-dimensional electron gas in AlGaN/GaN heterojunction field-effect transistors, J. Appl. Phys. 93 1631 (2003)
[42] Jogai, Parasitic Hole Channels in AlGaN/GaN Heterojunction Structures, Phys. stat. sol (b), 233 506 (2002).
[43] W. CorzineL. ColdrenM. Mashanovitch, Diode Lasers and Photonic Integrated Circuits 2nd edn. (New Jersey: John Wiley & Sons) (2012).
[44] P. Agrawal, N. K. Dutta, Semiconductor Lasers, 2nd Edition. (New York: Springer) (1993).
[45] S. Zory, Quantum well lasers (Boston: Academic Press) 62 (1993).
[46] Vurgaftman, J. R Meyer, L. R. R Mohan, Band parameters for III–V compound semiconductors and their alloys, J. Appl. Phys, 89,5815 (2001).
[47] Adachi, Physical Properties of III-V compounds. (New York: John Wiley & Sons (1992).
[48] B. Yekta, H. Kaatuzian, Design considerations to improve high temperature characteristics of 1.3 μm AlGaInAs-InP uncooled multiple quantum well lasers: Strain in barriers, Optik, 122, 514 (2011).
[49] Hader; J.V. Moloney; S.W. Koch, Microscopic evaluation of spontaneous emission- and Auger-processes in semiconductor lasers, IEEE J. Quantum Electron, 41(10), 1217- 1226 (2005).
[50] H. Tan, G. L. Snider, L. D. Chang, E. L. Hu., A self-consistent solution of Schrödinger–Poisson equations using a nonuniform mesh, J. Appl. Phys. 68, 4071 (1990). ‎
[51] L. Ruminates, M. S. Shur, Material properties of nitrides summary,” International Journal of High Speed Electronics and Systems. 14(1),1-19 (2004).