مدل سازی اپتیک خطی روی لایه نازک زیگزاگ آلومینیم

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه فیزیک، دانشگاه آزاد اسلامی، واحد میبد، میبد، ایران

2 گروه فیزیک، دانشکده علوم، دانشگاه آزاد اسلامی، واحد یادگار امام خمینی شهر ری، تهران، ایران

چکیده

لایه نازک مجسمه سازی شده آلومینیم زیگ زاگ از دو ستون یکسان تشکیل شده است، نانوستون های اول (زیگ) در زاویه χ و نانوستون های دوم (زاگ) در زاویه (π-χ) جهت گیری شده اند. خواص نوری این نانوساختارها با استفاده از روش ماتریس انتقال برای نورهای تابشی پلاریزه خطی s و p در محدوده طول موج 300-1000 نانومتر به دست آمد. طیف بازتاب و انتقال نانوساختارهای زیگزاگ با تعداد بازوها و طول‌های مختلف در زوایای تابش مختلف به‌دست آمد. قله های براگ برای نانوساختارهای زیگ زاگ بیش تراز 4 بازو برای نور پلاریزه در زوایای بیشتر از 30  ظاهر می شوند. برای نانوساختارهای زیگزاگ 4، 8 و 16 بازو به ترتیب یک، دو و سه قله براگ مشاهده شد. با این حال، برای نور پلاریزه p هیچ قله براگی در هیچ یک از زوایای تابش مشاهده نشد. همچنین برای ساختار زیگزاگ 8 بازو برای نور پلاریزه s در زوایای تابش 60، تعداد قله های براگ با افزایش طول بازو افزایش می یابد. علاوه بر این، قله های ایجاد شده در طول موج های کمتر از 550 نانومتر جابه جایی قرمز و قله های به وجود آمده در طول موج های بیشتر از 550 نانومترجابه جایی آبی را نشان دادند.

کلیدواژه‌ها

موضوعات

[1] S. B. Mansoor and B. S. Yilbas, “Phonon transport in a curved aluminum thin film due to laser short pulse irradiation”, Optics & Laser Technology, 101 (2018) 107.
[2] R. M. Pinto et al, “Piezoelectric aluminum nitride thin-films: A review of wet and dry etching techniques”, Microelectronic Engineering, 257 (2022) 111753.
[3] A. K. Saikumar et al, “A review of recent developments in aluminum gallium oxide thin films and devices”, Critical Reviews in Solid State and Materials Sciences, 47 (2022) 538.
[4] S. C. Lin et al, “Fabrication of Aluminum Oxide Thin-Film Devices Based on Atomic Layer Deposition and Pulsed Discrete Feed Method”, Micromachines, 14 (2023) 279.
[5] D. Ha et al, “Paper in electronic and optoelectronic devices”, Advanced electronic materials, 4 (2018) 1700593.
[6] D. Nieto et al, “Aluminum thin film enhanced IR nanosecond laser-induced frontside etching of transparent materials,” Optics and Lasers in Engineering, 88 (2017) 233.
[7] G. S. Rohrer et al, “The grain boundary character distribution of highly twinned nanocrystalline thin film aluminum compared to bulk microcrystalline aluminum”, Journal of Materials Science, 52 (2017) 9819.
[8] A. H. Elsheikh et al, “Thin film technology for solar steam generation: A new dawn”, Solar Energy, 177 (2019) 561.
[8] C. S. Oh et al, Proceedings of the 13th International Conference on Experimental Mechanics, Alexandroupolis, Greece, Springer: Berlin, Germany, (2007) pp1-6.
[9] G. Kaune et al, “Growth and morphology of sputtered aluminum thin films on P3HT surfaces”, ACS applied materials & interfaces, 3 (2011) 1055.
[10] X. Yu-Qing, “Characteristics and properties of metal aluminum thin films prepared by electron cyclotron resonance plasma-assisted atomic layer deposition technology”, Chinese Physics B, 21 (2012) 78.
[11] A. Ziashahabi and R. Poursalehi, “Optical Properties of Al@ Al2O3 Nanorod as a UV and Visible Wavelengths Plasmonic Nanostructure”, Materials Science, 11 (2015) 743.
[12] R. El Beainou et al, “Electrical resistivity and elastic wave propagation anisotropy in glancing angle deposited tungsten and gold thin films”, Applied Surface Science, 475 (2019) 606.
[13] M. Fakharpour “The effect of slope and number of arms on the structural properties of square tower-like manganese thin films”, Journal of Nanoanalysis, 8 (2021) 7.
[14] M. Postolache et al, “Birefringence of Thin Uniaxial Polymer Films Estimated Using the Light Polarization Ellipse”, Polymers, 14 (2022) 1063.
[15] G. Zhou et al, “The strain induced magnetic and anisotropic variations of lacoo3 thin films”, Journal of Magnetism and Magnetic Materials, 515 (2020) 167303.
[16] F. C. Akkari et al, “Impedance spectroscopy characterization of anisotropic nano-sculptured copper oxide Cu2O thin films for optoelectronic applications”, Semiconductor Science and Technology, 34 (2019) 075026.
[17] J. S. Hsu et al, “Optical polarization measurement for measuring deflection radius of the optically anisotropic flexible-polymeric substrate”, Polymer Testing, 84 (2020) 106376.
[18] Y. H. Liao et al, “Antireflection of optical anisotropic dielectric metasurfaces”, Scientific Reports, 13 (2023) 1641.
[19] K. Ratra, et al, “Design and analysis of omnidirectional solar spectrum reflector using one-dimensional photonic crystal”, Journal of Nanophotonics, 14 (2020) 026005.
[20] A. Lakhtakia R. Messier, Sculptured thin films: Nanoengineered Morphology and Optics, Vol. 143, Bellingham, SPIE press, USA, 2005.
[21] N. Tarjányi and D. Káčik, “Birefringence of magnetic fluid thin film induced by lateral magnetic field”, In AIP Conference Proceedings, 2411 (2021) 040011.
[22] T. Tanaka et al, “Nanostructure-enhanced infrared spectroscopy”, Nanophotonics, 11 (2022) 2541.
[23] S.  Z. Rahchamani et al, “Study of structural and optical properties of ZnS zigzag nanostructured thin films”, Applied Surface Science, 356 (2015) 1096.
[24] S.  Z. Rahchamani et al, “Anisotropic optical properties of ZnS thin films with zigzag structure”, Bulletin of Materials Science, 40 (2017) 897.
[25] Susann Liedtke et al, “Comparative study of sculptured metallic thin films deposited by oblique angle deposition at different temperatures”, Beilstein journal of nanotechnology, 9 (2018) 954.
[26] M. G. Arashti and M. Fakharpour, “Fabrication and characterization of Al/glass zig-zag thin film, comparing to the discrete dipole approximation results”, The European Physical Journal B, 93 (2020) 1.
[27] M. Fakharpour et al, “Electrical characterization of zig-zag Aluminum thin films using experimental and theoretical methods”, Journal of Optoelectronical Nanostructures, 6 (2021) 25.
[28] S. A. Jewell et al, “Circularly polarized colour reflection from helicoidal structures in the beetle Plusiotis boucardi”, New Journal of Physics, 9 (2007) 99.
[29] P. Vukusic et al, “A biological sub-micron thickness optical broadband reflector characterized using both light and microwaves”, Journal of the Royal Society Interface, 6 (2009) 193.
[30] J. A. Sherwin et al, “Homogenization of similarly oriented, metallic, ellipsoidal inclusions using the Bruggeman formalism”, Optics communications, 178 (2000) 267.
[31] A. Lakhtakia and Mod. Simul, “Axial loading of a chiral sculptured thin film”, Modelling and Simulation in Materials Science and Engineering, 8 (2000) 677.
[32] V. Vepachedu et al, “Nonexhibition of Bragg phenomenon by chevronic sculptured thin films: experiment and theory”, Journal of Nanophotonics, 11 (2017) 036018.
[33] J. A. Sherwin, A. Lakhtakia, I. J. Hodgkinson, “On calibration of a nominal structure–property relationship model for chiral sculptured thin films by axial transmittance measurements”, Optics communications, 209 (2002) 369.
[34] E. D. Palik, Handbook of optical constants of solids. Academic press, New York, Vol .3, (1998).
[35] M. Fakharpour et al, “Engineering Mn as tetragonal-like helical sculptured thin film for broadband absorption”, Plasmonics, 11 (2016) 1579.
[36] F. Babaei and H. Savaloni, “Reflection, transmission and circular dichroism in axially excited slab of a copper thin film helicoidal bianisotropic medium”, Optical Communication, 278 (2007) 321.
[37] B, Dick et al, “Controlled growth of periodic pillars by glancing angle deposition”, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 21 (2003) 23.
[38] K. M. McPeak et al, “Plasmonic films can easily be better”, rules and recipes. ACS photonics, 2 (2015) 326.
[39] S. V. Kesapragada et al, “Nanospring pressure sensors grown by glancing angle deposition”, Nano letters, 6 (2006) 854.
[40] A. Siabi-Garjan, and H. Savaloni, “Extinction spectra and electric near-field distribution of Mn nano-rod based sculptured thin films: experimental and discrete dipole approximation results”, Plasmonics, 10 (2015) 861.