[1] S. B. Mansoor and B. S. Yilbas, “Phonon transport in a curved aluminum thin film due to laser short pulse irradiation”, Optics & Laser Technology, 101 (2018) 107.
[2] R. M. Pinto et al, “Piezoelectric aluminum nitride thin-films: A review of wet and dry etching techniques”, Microelectronic Engineering, 257 (2022) 111753.
[3] A. K. Saikumar et al, “A review of recent developments in aluminum gallium oxide thin films and devices”, Critical Reviews in Solid State and Materials Sciences, 47 (2022) 538.
[4] S. C. Lin et al, “Fabrication of Aluminum Oxide Thin-Film Devices Based on Atomic Layer Deposition and Pulsed Discrete Feed Method”, Micromachines, 14 (2023) 279.
[5] D. Ha et al, “Paper in electronic and optoelectronic devices”, Advanced electronic materials, 4 (2018) 1700593.
[6] D. Nieto et al, “Aluminum thin film enhanced IR nanosecond laser-induced frontside etching of transparent materials,” Optics and Lasers in Engineering, 88 (2017) 233.
[7] G. S. Rohrer et al, “The grain boundary character distribution of highly twinned nanocrystalline thin film aluminum compared to bulk microcrystalline aluminum”, Journal of Materials Science, 52 (2017) 9819.
[8] A. H. Elsheikh et al, “Thin film technology for solar steam generation: A new dawn”, Solar Energy, 177 (2019) 561.
[8] C. S. Oh et al, Proceedings of the 13th International Conference on Experimental Mechanics, Alexandroupolis, Greece, Springer: Berlin, Germany, (2007) pp1-6.
[9] G. Kaune et al, “Growth and morphology of sputtered aluminum thin films on P3HT surfaces”, ACS applied materials & interfaces, 3 (2011) 1055.
[10] X. Yu-Qing, “Characteristics and properties of metal aluminum thin films prepared by electron cyclotron resonance plasma-assisted atomic layer deposition technology”, Chinese Physics B, 21 (2012) 78.
[11] A. Ziashahabi and R. Poursalehi, “Optical Properties of Al@ Al2O3 Nanorod as a UV and Visible Wavelengths Plasmonic Nanostructure”, Materials Science, 11 (2015) 743.
[12] R. El Beainou et al, “Electrical resistivity and elastic wave propagation anisotropy in glancing angle deposited tungsten and gold thin films”, Applied Surface Science, 475 (2019) 606.
[13] M. Fakharpour “The effect of slope and number of arms on the structural properties of square tower-like manganese thin films”, Journal of Nanoanalysis, 8 (2021) 7.
[14] M. Postolache et al, “Birefringence of Thin Uniaxial Polymer Films Estimated Using the Light Polarization Ellipse”, Polymers, 14 (2022) 1063.
[15] G. Zhou et al, “The strain induced magnetic and anisotropic variations of lacoo3 thin films”, Journal of Magnetism and Magnetic Materials, 515 (2020) 167303.
[16] F. C. Akkari et al, “Impedance spectroscopy characterization of anisotropic nano-sculptured copper oxide Cu2O thin films for optoelectronic applications”, Semiconductor Science and Technology, 34 (2019) 075026.
[17] J. S. Hsu et al, “Optical polarization measurement for measuring deflection radius of the optically anisotropic flexible-polymeric substrate”, Polymer Testing, 84 (2020) 106376.
[18] Y. H. Liao et al, “Antireflection of optical anisotropic dielectric metasurfaces”, Scientific Reports, 13 (2023) 1641.
[19] K. Ratra, et al, “Design and analysis of omnidirectional solar spectrum reflector using one-dimensional photonic crystal”, Journal of Nanophotonics, 14 (2020) 026005.
[20] A. Lakhtakia R. Messier, Sculptured thin films: Nanoengineered Morphology and Optics, Vol. 143, Bellingham, SPIE press, USA, 2005.
[21] N. Tarjányi and D. Káčik, “Birefringence of magnetic fluid thin film induced by lateral magnetic field”, In AIP Conference Proceedings, 2411 (2021) 040011.
[22] T. Tanaka et al, “Nanostructure-enhanced infrared spectroscopy”, Nanophotonics, 11 (2022) 2541.
[23] S. Z. Rahchamani et al, “Study of structural and optical properties of ZnS zigzag nanostructured thin films”, Applied Surface Science, 356 (2015) 1096.
[24] S. Z. Rahchamani et al, “Anisotropic optical properties of ZnS thin films with zigzag structure”, Bulletin of Materials Science, 40 (2017) 897.
[25] Susann Liedtke et al, “Comparative study of sculptured metallic thin films deposited by oblique angle deposition at different temperatures”, Beilstein journal of nanotechnology, 9 (2018) 954.
[26] M. G. Arashti and M. Fakharpour, “Fabrication and characterization of Al/glass zig-zag thin film, comparing to the discrete dipole approximation results”, The European Physical Journal B, 93 (2020) 1.
[27] M. Fakharpour et al, “Electrical characterization of zig-zag Aluminum thin films using experimental and theoretical methods”, Journal of Optoelectronical Nanostructures, 6 (2021) 25.
[28] S. A. Jewell et al, “Circularly polarized colour reflection from helicoidal structures in the beetle Plusiotis boucardi”, New Journal of Physics, 9 (2007) 99.
[29] P. Vukusic et al, “A biological sub-micron thickness optical broadband reflector characterized using both light and microwaves”, Journal of the Royal Society Interface, 6 (2009) 193.
[30] J. A. Sherwin et al, “Homogenization of similarly oriented, metallic, ellipsoidal inclusions using the Bruggeman formalism”, Optics communications, 178 (2000) 267.
[31] A. Lakhtakia and Mod. Simul, “Axial loading of a chiral sculptured thin film”, Modelling and Simulation in Materials Science and Engineering, 8 (2000) 677.
[32] V. Vepachedu et al, “Nonexhibition of Bragg phenomenon by chevronic sculptured thin films: experiment and theory”, Journal of Nanophotonics, 11 (2017) 036018.
[33] J. A. Sherwin, A. Lakhtakia, I. J. Hodgkinson, “On calibration of a nominal structure–property relationship model for chiral sculptured thin films by axial transmittance measurements”, Optics communications, 209 (2002) 369.
[34] E. D. Palik, Handbook of optical constants of solids. Academic press, New York, Vol .3, (1998).
[35] M. Fakharpour et al, “Engineering Mn as tetragonal-like helical sculptured thin film for broadband absorption”, Plasmonics, 11 (2016) 1579.
[36] F. Babaei and H. Savaloni, “Reflection, transmission and circular dichroism in axially excited slab of a copper thin film helicoidal bianisotropic medium”, Optical Communication, 278 (2007) 321.
[37] B, Dick et al, “Controlled growth of periodic pillars by glancing angle deposition”, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 21 (2003) 23.
[38] K. M. McPeak et al, “Plasmonic films can easily be better”, rules and recipes. ACS photonics, 2 (2015) 326.
[39] S. V. Kesapragada et al, “Nanospring pressure sensors grown by glancing angle deposition”, Nano letters, 6 (2006) 854.
[40] A. Siabi-Garjan, and H. Savaloni, “Extinction spectra and electric near-field distribution of Mn nano-rod based sculptured thin films: experimental and discrete dipole approximation results”, Plasmonics, 10 (2015) 861.