[1] D. C. Green, R. Boston, S. Glatzel, M. R. Lees, S.C. Wimbush, J. Potticary, W. Ogasawara, S. R. Hall, “On the Mechanism of Cuprate Crystal Growth: The Role of Mixed Metal Carbonates.” Advanced Functional Materials, 25 (2015) 4700.
[2] M. Foltyn, S. R. Civale, L. MacManus-Driscoll, J. L. Jia, Q. X. Maiorov, B. Wang, H. Maley, "Materials science challenges for high temperature superconducting wire.”Nature. Materials, 6 (2007) 631.
[3] M. Pakdil, E. Bekiroglu, M. Oz, N. K. Saritekin, G. Yildirim, “Role of preparation conditions of Bi-2223ceramic materials and optimization of Bi-2223 phase in bulk materials with experimental and statistical approaches.” Journal of Alloys and Compounds, 673 (2016) 205.
[4] F. Shahbaz Tehrani, V. Daadmehr, “The superconductivity mechanism in Nd-1111 iron-based superconductor doped by calcium.” Journal of Low-Temperature Physics, 199 (2020) 1299.
[5] E. Hannachi, Baykal, F. Ben Azzouz, “AC susceptibility investigation of YBCO superconductor added by carbon nanotubes.” Journal of Alloys and Compounds, 812 (2020) 152150.
[6] Y. Ding, R. Zhong, J. Schneeloch, G. D. Gu, L. Wang, K. He, S. H. Ji, L. Zhao, X. J. Zhou, C. L. Song, X. C. Ma, Q. K. Xue, Electronic structure of the ingredient planes of the cuprate superconductor Bi2Sr2CuO6+δ: A comparison study with Bi2Sr2CaCu2O8+δ, Physical Review B, 93 (2016) 140504(R).
[7] D. Sharma, R. Kumar, V. P. S. Awana, “DC and AC susceptibility study of sol–gel synthesized Bi2Sr2CaCu2O8+δ superconductor.” Ceramics International, 39 (2013) 1143.
[8] H. Fallah-arani, S. Baghshahi, D. Stornaiuolo, F. Tafuri, D. Massarotti, & N. Riahi-noori, “The influence of heat treatment on the microstructure, flux pinning and magnetic properties of bulk BSCCO samples prepared by sol-gel route.” Ceramics International, 44 (2018) 5209.
[9] N. Darsono, D. Y. K. Raju, “Effects of the sintering conditions on the structural phase evolution and TC of Bi1.6Pb0.4Sr2Ca2Cu3O7 prepared using the citrate sol–gel method.” Journal of Superconductivity and Novel Magnetism, 29 (2016) 1491.
[10] D. Li, H. Zhang, X. Gao, S. Yang, Q. Chen, “Effect of the fabrication process on the electrical properties of polycrystalline Bi1.7Pb0.3Sr2Ca2Cu3O10.” Ceramics International, 42 (2016) 1728.
[11] A. Costa, F. M. Ferreira, N. M. Rasekh, S. Fernandes, A. J. S. Torres, M. A. Madre, M. A. Diez, J .C. Sotelo, “Very Large Superconducting Currents Induced by Growth Tailoring.” Crystal Growth & Design, 15 (2015) 2094.
[12] Y. F. Lv, W. L. Wang, H. Ding, Y. Wang, Y. Ding, R. Zhong, J. Schneeloch, G.D. Gu, L. Wang, K. He, S. H. Ji, L. Zhao, X. J. Zhou, C. L. Song, X. C. Ma, Q. K. Xue, “Electronic structure of the ingredient planes of the cuprate superconductor Bi2Sr2CuO6+δ: A comparison study with Bi2Sr2CaCu2O8+δ.” Physical Review B, 93 (2016) 140504.
[13] Y. F. Lv, W. L. Wang, J. P. Peng, H. Ding, Y. Wang, L. Wang, K. He, S.-H. Ji, R. Zhong, J. Schneeloch, G. D. Gu, C. L. Song, X. C. Ma, Q. K. Xue, “Mapping the Electronic Structure of Each Ingredient Oxide Layer of High-Tc Cuprate Superconductor Bi2Sr2CaCu2O8+δ.” Physical Review Letters, 115 (2015) 237002.
[14] N. Türk, H. Gündoǧmuş, M. Akyol, Z.D. Yakinci, A. Ekicibil, B. Özçelik, “Effect of tungsten (W) substitution on the physical properties of Bi-(2223) superconductors.” Journal of Superconductivity and Novel Magnetism, 27 (2014) 711.
[15] Y. L. Chen, R. Stevens, “2223 Phase Formation in Bi (Pb)-Sr-Ca-Cu-O: I, The Role of Chemical Composition.” Journal of American Ceramic Society, 75 (1992) 1142.
[16] F. H. Chen, H. S. Koo, T. Y. Tseng, “Effect of Ca2PbO4 additions on the formation of the 110 K phase in Bi-Pb-Sr-Ca-Cu-O superconducting ceramics.” Applied Physics Letters, 58 (1991) 637.
[17] J. Yoo, S. Kim, J. W. Ko, Y. K. Kim, “The fabrication of fine and homogenous Bi-2223 precursor powder by a spray pyrolysis process.” Superconductor Science and Technology, 17 (2004) S538.
[18] D. Sharma, R. Kumar, V. P. S. Awana, “DC and AC susceptibility study of sol-gel synthesized Bi2Sr2CaCu2O8+ δ superconductor.” Ceramics International, 39 (2013) 1143.
[19] N. Darsono, D. Y. K. Raju, “Effects of the Sintering Conditions on the Structural Phase Evolution and Tc of Bi1.6Pb0.4Sr2Ca2Cu3O7 Prepared Using the Citrate sol – gel Method.” Journal of Supercondivity and Novel Magnetism, 29 ( 2016) 1491.
[20] M. K. Ben Salem, Y. Slimani, E. Hannachi, F. Ben Azzouz M. Ben Salem, “Bi-based superconductors prepared with addition of CoFe2O4 for the design of a magnetic probe.” Cryogenics, 89 ( 2018) 53.
[21] D. H. Tran, A. T. Pham, T. M. Le, D. T. K. Anh, Y. T. Phan, N. K. Man, D. Pham, W. N. Kang, “Enhanced flux pinning properties in Bi1.6Pb0.4Sr2−xKxCa2Cu3O10+δ compounds.” Journal of Materials Science: Materials in Electronics, 30 (2019) 8233.
[22] B. Özçelik, H. Gundogmus¸D. Yazici, “Effect of (Ta/Nb) co-doping on the magnetoresistivity and flux pinning energy of the BPSCCO superconductors.” Journal of Materials Science: Materials in Electronics, 25 (2014) 2456.
[23] G. Kirat, O. Kizilaslan, M. A. Aksan, “Effect of the Er-substitution on critical current density in glass-ceramic Bi2Sr2Ca2Cu3-xErxO10+δ superconducting system.” Ceramics International, 42 (2016) 15072.
[24] S. M. Khalil, “Role of rare-earth Ba2+ doping in governing the superconducting and mechanical characteristics of Bi-Sr-Ca-Cu-O.” Smart Materials and Structure, 14 (2005) 804.
[25] B. Özkurt, “Improvement of the critical current density in Bi-2223 ceramics by sodium-silver co-doping.” Journal of Materials Science: Materials in Electronics, 25 (2014) 3295.
[26] R. Wesche, High-Temperature Superconductors: Materials, Properties, and Applications, Springer US, Boston, MA, 1998, pp. 52-70.
[27] K. Neeraj, Handbook of High-Temperature Superconductor, CRC Press, New Delhi, 2003, pp. 112-114.
[28] Z. Y. Jia, H. Tang, Z. Q. Yang, Y. T. Xing, Y. Z. Wang, G. W. Qiao, “Effects of nano-ZrO2 particles on the superconductivity of Pb-doped BSCCO.” Physica C, 337 (2000) 130.
[29] M. Zouaoui, A. Ghattas, M. Annabi, F. Ben Azzouz, M. Ben Salem, “Effect of nano-size ZrO2 addition on the flux pinning properties of (Bi, Pb)-2223 superconductor.” Superconductor Science and Technology, 21 (2008) 125005.
[30] H. Azhan, F. Fariesha, S. Khalida, “Effect of Heat Treatments and Zr Doped on Superconducting Properties of Bi1.6Pb0.4Sr2Ca2Cu3Oδ Ceramics.” Journal of Superconductivity and Novel Magnetism, 24 (2011) 265.
[31] A. Heidari, S. Vedad, N. Heidari, M. Ghorbani, “Flux Dynamics in Y358 Superconductors.” Materials, 5 (2012) 882.
[32] S. Vinu, P. M. Sarun, R. Shabna, P. M. Aswathy, J. B. Anooja, U. Syamaprasad, “Suppression of flux-creep in (Bi, Pb)-2212 superconductor by holmium doping.” Physica B, 405 (2010) 4355.
[33] M. Mazaheri, S. Jamasb, “Electrical transport in the superconducting and normal states in Y2Ba5Cu7Ox high-temperature superconductor.” Solid State Communications, 234 (2016) 21.
[34] A. Aliabadi, Y. Akhavan-Farshchi, M. Akhavan, Flux Dynamics in Y358 and Gd358 Superconductors, Journal of Superconductivity and Novel Magnetism, 27 (2014) 741.
[35] H. Gündoğmuş, B. Özçelik, A. Sotelo, M. A. Madre, “Effect of Yb-substitution on thermally activated flux creep in the Bi2Sr2Ca1Cu2−xYbxOy superconductors.” Journal of Materials Science: Materials in Electronics, 24 (2013) 2568.
[36] D. Ahmad, W. J. Choi, Y. I. Seo, SehunSeo, Sanghan Lee, Yong Seung Kwon, “Thermally activated flux flow in superconducting epitaxial FeSe0.6Te0.4 thin film.” Results in Physics, 7 (2017) 16.
[37] M. Tinkham, “Resistive transition of high temperature superconductors.” Physical Review Letters, 61 (1988) 1658.
[38] M. R. Mohammadizadeh, M. Akvahan, “Magnetoresistance in Gd(Ba2−xPrx)Cu3O7+δ system.” Physica C, 390 (2003) 134.
[39] Y. Zalaoglu, G. Yildirim, C. Terzioglu, “Magnetoresistivity study on Cr added Bi-2212 superconductor ceramics with experimental and theoretical approaches.” Journal of Materials Science: Materials in Electronics, 24 (2013) 239.
[40] M. B. Turkoz, S. Nezir, A. Varilci, G. Yildirim, M. Akdogan, C. Terzioglu, “Experimental and theoretical approaches on magnetoresistivity of Lu-Doped Y-123 superconducting ceramics.” Journal of Materials Science: Materials in Electronics, 24 (2013) 1536.
[41] F. Shahbaz Tehrani, V. Daadmehr, “Superconductivity Versus Structural Parameters in Calcium-Doped Nd1-xCaxFeAsO0.8F0.2 Superconductors.” Journal of Superconductivity and Novel Magnetism, 33 (2020) 337.
[42] O. Özturk, D. Yegen, M. Yilmazlar, A. Varilci, C. Terzioglu, “The effect of cooling rates on properties of Bi1.7Pb0.35Sr1.9Ca2.1Cu3Oy superconductors produced by solid-state reaction method.” Physica C Superconductivity and its Applications, 451 (2007) 113.
[43] N. Darsono, D. Y. K. Raju, Effects of the Sintering Conditions on the Structural Phase Evolution and Tc of Bi1.6Pb0.4Sr2Ca2Cu3O7 Prepared Using the Citrate sol–gel Method, Journal of Supercondivity and Novel Magnetism, 26 (2016) 1491.
[44] N. Zarabini, V. Daadmehr, F. Shahbaz Tehrani, M. Abbasi, “Influence of Ag/Cu Substitution on Structural Effect of New High Temperature Superconductor Y3Ba5Cu8O18.” Procedia Materials Science, 11 (2015) 242.
[45] G. K. Williamson, W. H. Hall, Acta Metallurjica, 1 (1953) 22.
[46] S. Karimoto, H. Yamamoto, H, Sato, A. Tsukada, M. Naito, “TC versus lattice constants in MBEgrown M2CuO4 (M=La, Sr, Ba).” Journal of Low Temperature Physics, 131 (2003) 619.
[47] W. J. Choi, D. Ahmad, Y. I. Seo, R. K. Ko, Yong Seung Kwon, “Effect of the proton irradiation on the thermally activated flux flow in superconducting SmBCO coated conductors.” Scientific Reports, 10 (2020) 2017.
[48] R. Gross, P. Chaudhari, D. Dimos, A. Gupta, G. Koreu, “Thermally activated phase slippage in high-TC grain-boundary Josephson junctions.”, Physical Review Letters, 64 (1990) 228.
[49] T. T. M. Palstra, B. Batlogg, R. B. van Dover, L. F. Schneemeyer, J. V. Waszczak, “Dissipative flux motion in high-temperature superconductors.” Physical Review B, 41 (1990) 6621.
[50] B. Özçelik, C. Kaya, H. Gundogmus, A. Sotelo, M. A. Madre, “Effect of Ce Substitution on the Magnetoresistivity and Flux Pinning Energy of the Bi2Sr2Ca1−xCexCu2O8+δ Superconductors.” Journal of Low Temperature Physics, 174 (2014) 136.
[51] B. Özçelik, M. Gursul, A. Sotelo, M. A. Madre, Improvement of the Intergranular Pinning Energy in the Na-doped Bi-2212 Superconductors, Journal of Materials Science: Materials in Electronics, 26 (2015) 2830.
[52] T. T. M. Palstra, B. Batlogg, L. F. Schneemeyer, J. V. Waszczak, “Role of anisotropy in the dissipative behavior of high-temperature superconductors.” Physical Review B, 43 (1991) 3756.
[53] Y. Sun, S. Pyon, T. Tamegai, R. Kobayashi, T. Watashige, Sh. Kasahara, Y. Matsuda, T. Shibauchi, “Critical current density, vortex dynamics, and phase diagram of single-crystal FeSe.” Physical Review B, 92 (2015) 144509.
[54] S. Mirshamsi, S. Fallahi, M. Akhavan, Superconducting properties of Y1-xTbxBa2Cu3O7-δ and Y1-xTbxSr2Cu2.7Mo0.3O7-δ, Modern Physics Letters B, 24 (2010) 419.
[55] B. Özçelik, B., M. Gürsul, M., F. K. Nane, M. A. Madre, A. Sotelo, “Effect of Na-substitution on magnetoresistance and flux pinning energy of Bi-2212 ceramics prepared via hot-forging process.” Journal of Materials Science: Materials in Electronics, 29 (2018) 19147.
[56] B. Özkurt, B. Özçelik, “Effect of Nd-Substitution on Thermally Activated Flux Creep in the Bi1.7Pb0.3−xNdxSr2Ca3Cu4O12+y Superconductors.” Journal of Low Temperature Physics, 156 (2009) 22.
[57] B. Özçelik, E. Yalaz, M. E. Yakinci, A. Sotelo, M. A. Madre, “The Effect of K Substitution on Magnetoresistivity and Activation Energy of Bi- 2212 System.” Journal of Superconductivity and Novel Magnetism, 28 (2015) 553.
[58] V. Daadmehr, M. Akhavan, “Proton Irradiation Effects on Granular High‐TC Superconductors: Gd1–xPrxBa2Cu3O7–δ.” Physica Status Solidi (a).193 (2002) 153.