[1] Rushka and J. Freericks, “A completely algebraic solution of the simple harmonic oscillator”, Am. J. Phys. 88(11) (2019) 976–985.
[2] Dienykhan at al, “Oscillator Representation in Quantum Physics (Lecture Notes in Physics Monographs)”, 1st ed. Springer International Publishing, (1995).
[3] Fujiwara, “Rigorous Time Slicing Approach to Feynman Path Integrals”, 1st ed. Springer International Publishing; (2017).
[4] Mathieu et al, “The Physics of Glueballs” Int. Jou. Mod. Phys. E 181 (2009) 49.
[5] V. Souza et al, “Pseudoscalar glueball mass: a window on three-gluon interactions” Eur. Phys. J. A. 56(1) (2020) 1-7.
[6] Sexty, “Calculating the equation of state of dense quark-gluon plasma using the complex Langevin equation”, Phys Rev D. 100(7) (2019) 074503-074511.
[7] Abu-Shad and A. Ikot, “Analytic solution of multi-dimensional Schrödinger equation in hot and dense QCD media using the SUSYQM method”, Eur. Phys. J. Plus. 134(7) (2019) 321-331.
[8] Nakatsuji, “Solving the Schrödinger equation of atoms and molecules: Chemical-formula theory, free-complement chemical-formula theory, and intermediate variational theory” J. Chem. Phys. 149(11) (2018) 114105-14114.
[9] Maireche, “A theoretical investigation of nonrelativistic bound state solution at finite temperature using the sum of modified Cornell plus inverse quadratic potential” Sri. Lankan J. Phys. 21(1) (2020) 11-36.
[10] Gould, “Quantum Electrodynamics. Electromagnetic Processes”, 1st ed. Springer- Verleg; (2020); M., Fedoryuk, “Method of steepest descent”. 2nd ed. Librokom, (2010).
[11] Huber, “Spectrum of scalar and pseudoscalar glueballs from functional methods” Eur. Phys. J. C 80(11) (2020)1–12.
[12] Paulo et al, “Finite temperature gluon propagator in Landau gauge: non-zero Matsubara frequencies and spectral densities” EPJ Web Conf. 175 (2018) 07038.
[13] Abu-Shady et al, “Binding Energies and Dissociation Temperatures of Heavy Quarkonia at Finite Temperature and Chemical Potential in the n -Dimensional Space”, Advances in high energy physics. 7356843 (2018) 1-12.
[14] Jahanshir, “Di-Mesonic Molecules Mass Spectra”, Indian J. Sci. Technol. 10(22) (2017) 1–5.
[15] Roberts, “New Trends in Hadron Physics: A Few-Body Perspective”, Few-Body Syst. 62(3) (2021)1–2.
[16] S. Afonin and A. D. Katanaeva, “Glueballs and deconfinement temperature in AdS/QCD”, Phys. Rev. D 98 (2018) 114027.
[17] Dineykhan et al, “Determination of the glueball mass spectrum with allowance for spin-orbital interactions” Russian Physics Journal 47(12) (2004) 1250-60.
[18] Kaidalov and Yu. Simonov, “Glueball masses and Pomeron trajectory in nonperturbative QCD approach” Phys. Lett. B 477 (2000) 163.
[19] Nayek and R. Shibaji, “Finite temperature 0−+ glueball spectrum from non-susy D3 brane of Type IIB string theory”, arXiv:2105.01503 [hep-th], (2021).
[20] Morningstar and M. Peardon, “Glueball spectrum from an anisotropic lattice study”, Phys. Rev. D 60 (1999) 034509.
[21] Sexton et al, “Numerical Evidence for the Observation of a Scalar Glueball” Phys. Rev. Lett. 75 (1995) 4563.
[22] Ishii et al, “Scalar Glueball mass reduction at finite temperature in SU(3) anisotropic lattice QCD” Phys. Rev. D 66 (2002) 014507.
[23] V., Anisovich et al, “Partial wave analysis of pp→ π− π+, π0π0, ηη and ηη′” Nucl. Phys. A 662 (2000) 319.
[24] V. Anisovich et al, “Analysis of p̄p→π−π+, π0π0, ηη and ηη′ from threshold to 2.5 GeV/c” Phys. Lett. В 471 (1999) 271,
[25] Szczepaniak and E. S. Swanson, “The low lying glueball spectrum” Phys. Lett. B 577 (2003) 61-66.
[26] S. Hou and G. G. Wong, “The Glueball Spectrum from a Potential Model” Phys.Rev. D 67 (2003) 034003.
[27] Chen et al, “Glueball spectrum and matrix elements on anisotropic lattices” Phys. Rev. D 73 (2006) 014516.
[28] Godfrey “The Phenomenology of Glueball and Hybrid Mesons”, arXiv:hep-ph/0211464, (2002).
[29] M. Yao et al, “Review of particle physics” J. Phys. G 33 (2006) 1.