مطالعه DFT اثرات سیلیکون قرار گرفته شده بین نانو روبان های گرافنی دسته صندلی با عرض های متفاوت بر روی خواص مکانیکی و الکترونیکی

نوع مقاله : مقاله پژوهشی

نویسنده

گروه مهندسی برق، دانشگاه صنعتی امیرکبیر، تهران، ایران

چکیده

نانو نوارهای گرافنی (GNR) یکی از کاندیداهای مهم مورد استفاده در صنعت الکترونیک هستند. در این مقاله ، خواص مکانیکی و الکتریکی ترکیب نانو نوارهای گرافنی دسته صندلی با عرض های مختلف و رسوب دیمر سیلیکون برای ایجاد فلز عایق-نیمه هادی با روش DFT مورد بررسی قرار داده ایم. نتایج نشان می دهد که با کاهش میانگین عرض و کرنش کامپوزیت AGNR-AGNR و جایگزینی دیمر سیلیکون با دیمر کربن ، شکاف باند (bandgap) سیستم کاهش می یابد. با کاهش شکاف باند کامپوزیت AGNR-Si-AGNR مورد بررسی قرار می گیرد که مشخص می شود این کامپوزیت کاندیدای امیدوار کننده ای برای استفاده به عنوان ترانزیستور است ، زیرا دارای شکاف باند کم است و همچنین به دلیل نزدیک بودن به سطح فرمی تحت ولتاژ بایاس، عبورجریان زیاد در این ساختار امکان پذیر است.

کلیدواژه‌ها

[1]          S. Prabhakar, R. Melnik, "Band engineering and elastic properties of strained armchair graphene nanoribbons: semiconductor vs metallic characteristics." arXiv preprint arXiv:1901.00576, 2019.
[2]          F. Schwierz, "Graphene transistors." Nature Nanotechnology, 5 (2010) 487.
[3]          E. Kan, Z. Li, J. Yang, "Graphene nanoribbons: geometric, electronic, and magnetic Properties." Physics and Applications of Graphene-Theory, Sergey Mikhailov, IntechOpen (2011).
[4]          J. Wang, M. Liang, Y. Fang, T. Qiu, J. Zhang, L. Zhi, "Rod‐coating: towards large‐area fabrication of uniform reduced graphene oxide films for flexible touch screens." Advanced Materials, 24 (2012) 2874.
[5]          M. Aliofkhazraei, N. Ali, W. I. Milne, C. S. Ozkan, S. Mitura, J. L. Gervasoni, Graphene Science Handbook: Nanostructure and Atomic Arrangement: CRC Press (2016).
[6]          J. R. Reimers, "Computational methods for large systems: electronic structure approaches for biotechnology and nanotechnology." John Wiley & Sons (2011).
[7]          K. Wakabayashi, K.-i. Sasaki, T. Nakanishi, T. Enoki, "Electronic states of graphene nanoribbons and analytical solutions." Science and Technology of Advanced Materials, 11 (2010) 054504.
[8]          F. Hao, X. Chen, "First-principles study of lithium adsorption and diffusion on graphene: the effects of strain." Materials Research Express, 2 (2015) 105016.
[9]          D. R. Cooper, B. D’Anjou, N. Ghattamaneni, B. Harack, M. Hilke, A. Horth, et al.,  "Experimental review of graphene. International Scholarly Research Notices." 2012 (2012) 501686.
[10]        F. Schwierz, "Graphene transistors." Nature Nanotechnology, 5 (2010) 487.
[11]        N. Lu, L. Wang, L. Li, M. Liu, "A review for compact model of graphene field-effect transistors," Chinese Physics B, 26 (2017). 036804.
[12]        A. Celis, M. Nair, A. Taleb-Ibrahimi, E. Conrad, C. Berger, W. De Heer, et al., "Graphene nanoribbons: fabrication, properties and devices." Journal of Physics D: Applied Physics, 49 (2016) 143001.
[13]        T. Fang, A. Konar, H. Xing, D. Jena, "Mobility in semiconducting graphene nanoribbons: Phonon, impurity, and edge roughness scattering." Physical Review B, 78 (2008) 205403.
[14]        A. Naeemi. J. D. Meindl, "Conductance modeling for graphene nanoribbon (GNR) interconnects." IEEE electron device letters,  28 (2007) 428.
[15]        P. Zhao, M. Choudhury, K. Mohanram, J. Guo, "Analytical theory of graphene nanoribbon transistors." Design and Test of Nano Devices, Circuits and Systems, 2008 IEEE International Workshop on, pp. 3-6, 2008
[16]        S. Mehmet Gokhan, "The effects of vacancy location and concentration on the transport properties of armchair and zigzag graphene nanoribbons." Materials Research Express (2019).
[17]        S. Hong, Y. Yoon, J. Guo, "Metal-semiconductor junction of graphene nanoribbons." Applied Physics Letters, 92 (2008) 083107.
[18]        H. Sevinçli, M. Topsakal, S. Ciraci, "Superlattice structures of graphene-based armchair nanoribbons." Physical Review B, 78 (2008) 245402.
[19]        B. Fan and S. Chang, "Confined state energies in AGNR semiconductor–semiconductor heterostructure." Physics Letters A, 381 (2017) 319.
[20]        Y. Lv, W. Qin, C. Wang, L. Liao, X. Liu, "Recent Advances in Low‐Dimensional Heterojunction‐Based Tunnel Field Effect Transistors." Advanced Electronic Materials, 5 (2019) 1800569.
[21]        M. Moradinasab, M. Pourfath, M. Fathipour, and H. Kosina, "Numerical study of graphene superlattice-based photodetectors." IEEE Transactions on Electron Devices, 62 (2015) 593.
[22]        http://www.quantum-espresso.org/resources/tutorials
[23]        F. Giustino, "Materials modelling using density functional theory: properties and predictions" Oxford University Press (2014).
[24]        R. M. Martin, "Electronic structure: basic theory and practical methods." Cambridge university press (2004).
[25]        A. Shokuhi Rad, M. Esfahanian, S. Maleki, G. Gharati, "Application of carbon nanostructures toward SO2 and SO3 adsorption: a comparison between pristine graphene and N-doped graphene by DFT calculations." Journal of Sulfur Chemistry, 37 (2016) 176.
[26]        E. Rudberg, P. Sałek, Y. Luo, "Nonlocal exchange interaction removes half-metallicity in graphene nanoribbons." Nano letters, 7 (2007) 2211.
[27]        G. Gui, J. Li, and J. Zhong, "Band structure engineering of graphene by strain: first-principles calculations." Physical Review B, 78 (2008) 075435.
[28]        Y. W. Son, M. L. Cohen, S. G. Louie, "Energy gaps in graphene nanoribbons." Physical review letters, 97 (2006) 216803.
[29]        N. Merino-Díez, A. Garcia-Lekue, E. Carbonell-Sanromà, J. Li, M. Corso, L. Colazzo, et al., "Width-dependent band gap in armchair graphene nanoribbons reveals Fermi level pinning on Au (111)." ACS nano, 11 (2017) 11661.