تاثیر پارامترهای لیزر (فرکانس و شاریدگی) بر مشخصه های نوری و ساختاری لایه های اکسید روی رسوب داده شده به روش رسوب لیزر پالسی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه فیزیک، دانشکده فیزیک و شیمی، دانشگاه الزهرا، ایران

2 گروه فیزیک، دانشگاه صنعتی مالک اشتر، لویزان، تهران، ایران

چکیده

لایه‌نشانی لیزر پالسی به دلیل مزیت‌های منحصر به فردی که در رشد مواد مختلف دارد یک روش سنتز کارآمد است. علاوه بر این کیفیت لایه‌های نازک به پارامترهای مختلف فرآیند لایه‌نشانی بستگی دارد. ضمن این که اکسید روی به خاطر ویژگی‌های منحصر به فردش کاربردهای فراوانی در ساخت ادوات اپتیکی، الکترونیکی و الکترواپتیکی دارد. ما یک چیدمان لایه‌نشانی لیزر پالسی را برپا کرده‌ایم تا لایه‌های نازک ZnO را روی زیرلایه‌های شیشه‌ای انباشته کنیم. این پژوهش مشخصه‌های ساختاری و اپتیکی لایه‌های انباشته شده با دو نرخ تکرار پالس متفاوت را بررسی می‌کند. براساس عکس‌های میکروسکوپ اپتیکی و میکروگراف‌های میکروسکوپ الکترونی روبشی SEM)) به دست آمده از لایه‌ها افزایش نرخ تکرار پالس، یکنواختی توزیع اندازه ذرات را افزایش می‌دهد و ضخامت لایه را بیش‌تر می‌کند. هم‌چنین مشخصه‌های اپتیکی که به کمک اسپکتروسکوپی مرئی- فرابنفش بررسی شده، نشان می‌دهد نرخ جذب و عبور، گاف انرژی و کیفیت کریستالی لایه‌ها با تغییر نرخ تکرار پالس قابل تنظیم است.

کلیدواژه‌ها

[1] Sun, X. W., and Hoi Sing Kwok. "Optical properties of epitaxially grown zinc oxide films on sapphire by pulsed laser deposition." Journal of applied physics, 86 (1999) 408.
[2] Kumar, Rajesh, et al. "ZnO nanostructured thin films: Depositions, properties and applications—A review." Materials Express, 5 (2015) 3.
[3] Alexiadou, M., et al. "Pulsed laser deposition of ZnO thin films decorated with Au and Pd nanoparticles with enhanced acetone sensing performance." Applied Physics A, 123 (2017): 262.
[4] R. Eason, Pulsed laser deposition of thin films: applications-led growth of functional materials. seventh ed., John Wiley & Sons, 2007.
[5] Mousavi, Seyedeh Soraya, Batool Sajad, and Mohammad Hossein Majlesara. "Fast response ZnO/PVA nanocomposite-based photodiodes modified by graphene quantum dots." Materials & Design, 162 (2019) 249-255.
[6] Yu, Xinge, Tobin J. Marks, and Antonio Facchetti. "Metal oxides for optoelectronic applications." Nature Materials, 15 (2016) 383-396.
[7] Efafi, Babak, et al. "A method for optimizing the electrical conductivity of Al: ZnO TCO films." Materials Letters, 195 (2017) 52-54.
[8] Mousavi, Seyedeh Soraya, et al. "Practical optimization of highly sensitive azo photoconductor with circular electrode scheme." Journal of Lightwave Technology 36 (2018) 5800-5806.
[9] Efafi, Babak, et al. "Fabrication of high-performance UVC photodiodes by Al+ 3 ion adjustment in AZO/Si heterostructures." Optical Materials, 81 (2018) 7-11.
[10] Liu, Y. C., S. K. Tung, and J. H. Hsieh. "Influence of annealing on optical properties and surface structure of ZnO thin films." Journal of crystal growth, 287 (2006) 105-111.
[11] Hussain, Saleem Azara, and Awatif Jabbar Radi. "Study the effect of film thickness on the structural and optical of (ZnO) thin film prepared by pulsed laser deposition." Journal of Physics: Conference Series, 1294 2 IOP Publishing (2019).
[12] Kumar, Rajesh, Girish Kumar, and Ahmad Umar. "Pulse laser deposited nanostructured ZnO thin films: a review." Journal of nanoscience and nanotechnology, 14  (2014) 1911.
[13] Soni, Ankit, Komal Mulchandani, and K. R. Mavani. "Crystallographically oriented porous ZnO nanostructures with visible-blind photoresponse: controlling the growth and optical properties." Materialia, 6 (2019)100326.
[14] Jahromi, Khalil Eslami, et al. "Investigation of a reliable ohmic contact to n-type ZnO thin films prepared by sol-gel method." IEEE Electron Device Letters, 37 (2015) 43.
[15] Zeng, Ji Nan, et al. "Effect of deposition conditions on optical and electrical properties of ZnO films prepared by pulsed laser deposition." Applied surface science, 197 (2002) 362.
[16] Ma, Shouzhi, et al. "Controlling the band gap of ZnO by programmable annealing." The Journal of Physical Chemistry C, 115 (2011) 20487.
[17] Zhao, Lei, et al. "Structural and optical properties of ZnO thin films deposited on quartz glass by pulsed laser deposition." Applied surface science, 252 (2006) 8451.
[18] Franklin, J. B., et al. "Optimised pulsed laser deposition of ZnO thin films on transparent conducting substrates." Journal of Materials Chemistry, 21 (2011) 8178.
[19] Esqueda-Barrón, Y., M. Herrera, and S. Camacho-López. "ZnO synthesized in air by fs laser irradiation on metallic Zn thin films." Applied Surface Science, 439 (2018) 681.
[20] Vincze, Andrej, et al. "Growth and characterization of pulsed laser deposited ZnO thin films." Open Physics 5 (2007) 385.
[21] Adawiya J. Haider, Allaa A. Jabbar, Ghalib A. Ali, "A review of Pure and Doped ZnO Nanostructure Production and its Optical Properties Using Pulsed Laser Deposition Technique." Journal of Physics: Conference Series, 1795 IOP Publishing (2021).
[22] Zhaoyang, Wang, Sun Liyuan, and Hu Lizhong. "Effect of laser repetition frequency on the structural and optical properties of ZnO thin films by PLD." Vacuum, 85 (2010) 397-399.
[23] Brygo, Francois, et al. "Laser fluence, repetition rate and pulse duration effects on paint ablation." Applied surface science, 252 (2006) 2131-2138.
[24] Guan, Li, et al. "Role of pulse repetition rate in film growth of pulsed laser deposition." Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 266.1 (2008): 57-62.
[25] Ojeda‐G‐P, Alejandro, Max Döbeli, and Thomas Lippert. "Influence of plume properties on thin film composition in pulsed laser deposition." Advanced Materials Interfaces, 5 (2018) 1701062.
[26] F. Hasani, M. Simdar, M. Amin Bassam, S. Soraya Mousavi, and B. Sajad, “Annealing Effects on Optical Properties Zinc Oxide (ZnO) Thin Films.”Optics and Photonics Society of Iran, 25 (2019) 661.
[27] M. Simdar, F. Hassani, SS. Mousavi, and B. Sajad. "The effects of stable substrate temperature on the quality of ZnO films prepared by pulsed laser deposition." Nanoscale, 7 (2020) 25-29.
[28] Simdar, Mehrnaz, et al. "Distinctive ZnO film’s structures and morphologies for different modes of the heating substrate." Materials Letters, 297 (2021): 129914.
[29] Shewale, P. S., and Y. S. Yu. "The effects of pulse repetition rate on the structural, surface morphological and UV photodetection properties of pulsed laser deposited Mg-doped ZnO nanorods." Ceramics International, 42 (2016)  7125-7134
[30] Bruncko, Jaroslav, et al. "Pulsed laser deposition of Ga doped ZnO films-Influence of deposition temperature and laser pulse frequency on structural, optical and electrical properties." Vacuum, 159 (2019): 134-140.
[31] Shewale, P. S., S. H. Lee, and Y. S. Yu. "Pulse repetition rate dependent structural, surface morphological and optoelectronic properties of Ga-doped ZnO thin films grown by pulsed laser deposition." Journal of Alloys and Compounds, 725 (2017): 1106-1114.
[32] Segets, Doris, et al. "Analysis of optical absorbance spectra for the determination of ZnO nanoparticle size distribution, solubility, and surface energy." ACS nano, 3 (2009) 1703-1710.
[33] Lemlikchi, S., et al. "Study of structural and optical properties of ZnO films grown by pulsed laser deposition." Applied Surface Science, 256 (2010) 5650-5655.
[34] Wisz, G., et al. "Structural, optical and electrical properties of zinc oxide layers produced by pulsed laser deposition method." Nanoscale Research Letters, 12 (2017) 1-7.
[35] Ianno, N. J., et al. "Characterization of pulsed laser deposited zinc oxide." Thin Solid Films, 220 (1992) 92-99.