توسعه کاتالیزورهای سه گانه Ti-Ni-B برای واکنش هیدرولیز NaBH4 و برآورد فعالیت های کاتالیزوری آنها

نوع مقاله : مقاله پژوهشی

نویسندگان

چکیده

از آنجا که هیدروژن را می توان از منابع تجدید پذیر به دست آورد در کنار اینکه دارای مقدار گرمای بالایی است، هیدروژن یک منبع انرژی امیدوار کننده می باشد. از هیدریدهای شیمیایی مانند سدیم بوروهیدرید (NaBH4)، به عنوان منبع هیدروژن استفاده می شود. این به خاطر محتوای هیدروژن نسبتاً زیاد همراه با قابلیت بازیافت آنها می باشد. در این مطالعه، کاتالیزورهای Ni-B با افزودن تیتانیوم برای واکنش هیدرولیز NaBH4آماده شدند. در تهیه کاتالیزورهای Ni-Ti-B، از روش کاهش شیمیایی استفاده شد. نمک NiCl2 به عنوان منبع Ni، در حالیکه از نمک TiCl3 به عنوان منبع تیتانیوم استفاده شد تا تعیین تغییرات فعالیت های کاتالیزور صورت پذیرد. با ارزیابی نتایج، مطالعات بعدی روی موثرترین غلظت نمک فلز تیتانیوم صورت گرفت.  اثر کاتالیزورها در نسبت های مولی مختلف Ti / (Ni + Ti) با توجه به دما ، مقدار کاتالیزور ، غلظت NaBH4 و  NaOH بررسی شده است. ریزساختار ها و تحلیل بنیادی هر کاتالیزور با استفاده از SEM و EDS تفسیر شدند. پس از تعیین بالاترین عملکرد نسبت مولی Ti / (Ni + Ti)، فرآیند تکلیس در دماهای مختلف انجام شد. برای کاتالیزورNi-B ، پنج درصد وزنی NaOH و پنج درصد وزنی NaBH4 به عنوان ترکیب سوخت بهینه تعیین شد. علاوه بر این، کاتالیزورهای با پوشش تیتانیوم نشان دادند که دوام و میزان نرخ تولید هیدروژن بالاتری برای  هیدرولیز NaBHدارند.
 

موضوعات

[1] L. Semiz, "Hydrogen generation from sodium borohydride by sulfonated polymers." Journal of Physics and Chemistry of Solids, 143 (2020) 109498.
[2] E. Fangaj, A. A. Ceyhan, "Apricot Kernel shell waste treated with phosphoric acid used as a green, metal-free catalyst for hydrogen generation from hydrolysis of sodium borohydride." International Journal of Hydrogen Energy, 45 (2020) 17104.
[3] C. H. Liu, et al., Hydrogen generation from hydrolysis of sodium borohydride using Ni–Ru nanocomposite as catalysts. International Journal of Hydrogen Energy, 34 (2009) 2153.
[4] Y. Wei, et al., "Highly active and durable catalyst for hydrogen generation by the NaBH4 hydrolysis reaction: CoWB/NF nanodendrite with an acicular array structure." Journal of Alloys and Compounds, 836 (2020) 155429.
[5] J. Li, et al., "A modified ‘skeleton/skin’strategy for designing CoNiP nanosheets arrayed on graphene foam for on/off switching of NaBH4 hydrolysis." RSC Advances, 10 (2020) 26834.
[6] J. Ding, J., et al., "Preparation and catalytic activity of wheat straw cellulose based hydrogel-nanometal composites for hydrogen generation from NaBH4 hydrolysis." International Journal of Hydrogen Energy, 43 (2018) 9978.
[7] C. Luo, et al., "Highly Efficient and Selective Nanocatalyst for Hydrogen Release from Sodium Borohydride Hydrolysis." ChemCatChem, 11 (2019) 1643.
[8] M. Aydin, A. Hasimoglu, O. K. Ozdemir, "Kinetic properties of Cobalt–Titanium–Boride (Co–Ti–B) catalysts for sodium borohydride hydrolysis reaction." International Journal of Hydrogen Energy, 41 (2016) 239.
[9] R. B. Biniwale, et al., "Chemical hydrides: a solution to high capacity hydrogen storage and supply." International Journal of Hydrogen Energy, 33 (2008) 360.
[10] T. H. Oh, et al., "Sodium borohydride hydrogen generator using Co–P/Ni foam catalysts for 200 W proton exchange membrane fuel cell system." Energy, 90 (2015) 1163.
[11] H. Schlesinger, et al., "Sodium borohydride, its hydrolysis and its use as a reducing agent and in the generation of hydrogen1." Journal of the American Chemical Society, 75 (1953) 215.
[12] Y. Liang, et al., "Hydrogen generation from sodium borohydride solution using a ruthenium supported on graphite catalyst." International Journal of Hydrogen Energy, 35 (2010) 3023.
[13] |G. Guella, et al., "New insights on the mechanism of palladium-catalyzed hydrolysis of sodium borohydride from 11B NMR measurements." The Journal of Physical Chemistry B, 110 (2006) 17024.
[14] N. Patel, R. Fernandes, A. Miotello, "Hydrogen generation by hydrolysis of NaBH4 with efficient Co– P–B catalyst: a kinetic study." Journal of Power Sources, 188 (2009) 411.
[15] H. Li, et al., "Crystallization Deactivation of Ni– P/SiO2 Amorphous Catalystand the Stabilizing Effect of Silica Support on the Ni–P Amorphous Structure." Journal of Catalysis, 194 (2000) 211.
[16] H. Dai, et al., "High-performance cobalt–tungsten– boron catalyst supported on Ni foam for hydrogen generation from alkaline sodium borohydride solution." International Journal of Hydrogen Energy, 33 (2008) 4405.
[17] X. L. Ding, et al., "Hydrogen generation from catalytic hydrolysis of sodium borohydride solution using Cobalt–Copper–Boride (Co–Cu–B) catalysts." International Journal of Hydrogen Energy, 35 (2010) 11077.
[18] X. Yuan, et al., "Effects of heat-treatment temperature on properties of Cobalt–Manganese– Boride as efficient catalyst toward hydrolysis of alkaline sodium borohydride solution." International Journal of Hydrogen Energy, 37 (2012) 995.
[19] M. Nie, et al., "Ni–Fe–B catalysts for NaBH4 hydrolysis." International Journal of Hydrogen Energy, 37 (2012) 1568.
[20] D. W. Zhuang, et al., "Hydrogen generation from hydrolysis of solid sodium borohydride promoted by a cobalt–molybdenum–boron catalyst and aluminum powder." International journal of hydrogen energy, 38 (2013) 10845.
[21] C. Xiang, et al., "Hydrogen generation by hydrolysis of alkaline sodium borohydride using a cobalt–zinc–boron/graphene nanocomposite treated with sodium hydroxide." International Journal of Hydrogen Energy, 40 (2015) 4111.
[22] O. K. Özdemir, "Aktif Co-Ti (II)-B alaşım katalizörlerinin hidrojen üretiminde NaBH4 hidroliz reaksiyonu ve çevresel etkiler için kinetik özelliklerin analizi." Gazi Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 34 (2019) 1585.
[23] S. Jeong, et al., "A study on hydrogen generation from NaBH4 solution using the high-performance Co-B catalyst." Journal of Power Sources, 144 (2005) 129.