اثرات همزمان شدت نور و میدان مغناطیسی بر خواص نوری حلقه های نوری چندچاهه GaN/AlN با شعاع خارجی ثابت

نوع مقاله : مقاله پژوهشی

چکیده

در اینجا، ما شدت نوری، میدان مغناطیسی، تعداد چاه و ضخامت های حلقه کوانتومی روی جذب نوری حلقه های کوانتومی چندچاهه GaN/AlN شعاع ثابت را مطالعه می کنیم. ما نشان می دهیم، هنگامی که شدت افزایش می یابد، ضریب جذب کلی کاهش می یابد. این موضوع به شعاع داخلی حلقه Rin، میدان مغناطیسی و تعداد چاه ها ربطی ندارد. اگر تعداد چاه ها افزایش یابد ضریب جذب کلی کاهش می یابد. در هر صورت، سیستم با °Rin=400 A در میدان مغناطیسی یک استثناء است. در این سیستم، اگر تعداد چاه ها افزایش یابد، ضریب جذب کلی اول کاهش و سپس افزایش می یابد. با افزایش Rin،ضریبجذب کلی بطور یکنوا افزایش می یابد. این رفتار یکنوای کاهشی برای سیستم های با تعداد بیشر چاه و میادین مغناطیسی بیشتر هم صادق است. در Rin ثابت و برای سیستم های با تعداد بیشتر چاه و مقادیر بالاتر Rin ، با افزایش میدان مغناطیسی ضریب جذب کلی بطور یکنواخت کاهش می یابد. نهایتا، در میادین مغناطیسی پایین تر، ضریب جذب کلی، نسبت به میادین مغناطیسی بالاتر، سریعتر کاهش می یابد.

کلیدواژه‌ها

[1] A. Lorke, R.J. Luyken, "Many-particle ground states and excitations in nanometer-size quantum structures." Physica B, 256 (1998) 424.
[2] S. Tarucha, D.G. Austing, T. Honda, R.J. van der Haage, L. Kouwenhoven, "Shell filling and spin effects in a few electron quantum dot." Physical Review Letters, 77 (1996) 3613.
[3] M. Buttiker, Y. Imry, R. Landauer, "Josephson behavior in small normal one-dimensional rings." Physics Letters A, 96 (1983) 365.
[4] Y. Aharonov, D. Bohm, "Significance of electromagnetic potentials in the quantum theory." Physical Review, 115 (1959) 485.
[5] D. Ahn, S.L. Chuang, "Calculation of linear and nonlinear intersubband optical absorptions in a quantum well model with an applied electric field." IEEE Journal of Quantum Electronics, 23 (1987) 2196.
[6] S. Zivanovic, V. Milanovic, and Z. Ikonic, "Intraband absorption in semiconductor quantum wells in the presence of a perpendicular magnetic field." Physical Review B, 52 (1995) 8305.
[7] P. J. Stevens, M. Whitehead, G. Parry, and K. Woodbridge, "Computer modeling of the electric field dependent absorption spectrum of multiple quantum well material." IEEE Journal of Quantum Electronics, 24 (1988) 2007.
[8] Z. Li, "Studies on linear and nonlinear intersubband optical absorptions in a wurtzite AlGaN/GaN coupling quantum well." Communications in Theoretical Physics, 49 (2008) 786.
[9] I. Vurgaftman, J. M. Hinckley, and J. Singh, "A comparison of optoelectronic properties of lattice-matched and strained quantum-well and quantum-wire structures." IEEE Journal of Quantum Electronics, 30 (1994) 75.
[10] E. Ozturk, I. Sokmen, "The electric field effects on intersubband optical absorption of Si δ-doped GaAs layer." Solid State Communications, 126 (2003) 605.
[11] R.B. Santiago, L.G. Guimaraes, "Extended eigenfunctions in asymmetric double triangular quantum wells in weak electric fields." Solid state electronics, 46 (2002) 89.
[12] C. Adelmann, J. Simon, G. Feuillet, N.T. Pelekanos, B. Daudin, G. Fishman, "Self-assembled InGaN quantum dots grown by molecular-beam epitaxy." Applied Physics Letters, 76 (2000) 1570.
[13] S. Nakamura, "InGaN-based violet laser diodes." Semicondor Science and Technology, 14 (1999) R27.
[14] S.C. Jain, M. Willander, J. Narayan, R. Van Overstraeten, "III–nitrides: Growth, characterization, and properties." Journal of Applied Physics, 87 (2000) 967.
[15] I. Friel, K. Driscoll, E. Kulenica, M. Dutta, R. Paiella, T.D. Moustakas, "Investigation of the design parameters of AlN/GaN multiple quantum wells grown by molecular beam epitaxy for intersubband absorption." Journal of Crystal Growth, 278 (2005) 387.
[16] H. Machhadani, M. Beeler, S. Sakr, E. Warde, Y. Kotsar, M. Tchernycheva, M.P. Chauvat, P. Ruterana, G. Nataf, Ph. De Mierry, E. Monroy, and F.H. Julien, "Systematic study of near-infrared intersubband absorption of polar and semipolar GaN/AlN quantum wells." Journal of Applied Physics, 113 (2013) 143109.
[17] M. Tchernycheva, L. Nevou, L. Doyennette, F. H. Julien, and E. Warde, F. Guillot, E. Monroy, and E. Bellet-Amalric, T. Remmele and M. Albrecht, "Systematic experimental and theoretical investigation of intersubband absorption in GaN/AlN quantum wells." Physical Review B, 73 (2066) 125347.
[18] M. Solaimani, M. Izadifard, H. Arabshahi, M. R. Sarkardei, "Study of optical non-linear properties of a constant total effective length multiple quantum wells system." Journal of Luminescence, 134 (2013) 699.
[19] M. Solaimani, M. Izadifard, H. Arabshahi, M. R. Sarkardei, "Effect of the magnetic field on optical properties of GaN/AlN multiple quantum wells." Journal of Luminescence, 134 (2013) 88.
[20] M. Solaimani, A. Latifi, "Optical properties of GaN/AlN constant total effective radius multi-wells quantum rings." Optical and Quantum Electronics, 47 (2015) 1901.
[21] M. Solaimani, L. Lavaei, M. Ghalandari, "Intersubband optical properties of a two electron GaN/AlN constant total effective radius multi-shells quantum rings." Superlattices and Microstructures, 82 (2015) 1.
[22] W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flanner, numerical recipe, third edition, Cambridge university press (2007).
[23] W. Xie, "Linear and nonlinear optical absorptions of a two-electron quantum dot." Physica B, 405 (2010) 2102.
[24] G. Rezaei, M. R. K. Vahdani, and M. Barati, "Polaron effects on the intersubband optical absorption coefficient and refractive index changes of an infinite confining potential quantum box." Journal of Nanoelectronics and Optoelectronics, 3 (2008) 1.
[25] L. Zhang, Z. Yu, W. Yao, Y. Liu, H. Ye, "Linear and nonlinear optical properties of strained GaN/AlN quantum dots: effects of impurities, radii of QDs, and the incident optical intensity." Superlattices and Microstructures, 48 (2010) 434.
[26] D. Ahn, S.L. Chuang, "Calculation of linear and nonlinear intersubband optical absorptions in a quantum well model with an applied electric field." IEEE Journal of Quantum Electronics, 23 (1987) 2196.
[27] Z.-H. Zhang, K.-X. Guo, B. Chen, R.-Z. Wang, M.-W. Kang, S. Shao, "Theoretical studies on the optical absorption coefficients and refractive index changes in parabolic quantum dots in the presence of electric and magnetic fields." Superlattices and Microstructures, 47 (2010) 325.
[28] N. Zeiri, A. Naifar, S. Abdi-Ben Nasrallah, M. Said, "Dielectric environment effect on linear and nonlinear optical properties for CdS/ZnS core/shell quantum dots." Results in Physics, 15 (2019) 102661.
[29] E.C. Niculescu, C. Stana, G. Tiriba, and C. Trusc, "Magnetic field control of absorption coefficient and group index in an impurity doped quantum disc." European Physical Journal B, 90 (2017) 100.
[30] E.B. Al, E. Kasapoglu, S. Sakiroglu, C.A. Duque, I. Sokmen, "Binding energy of donor impurity states and optical absorption in the Tietz-Hua quantum well under an applied electric field." Journal of Molecular Structure, 1157 (2018) 288.
[31] E. Feddi, A. Talbi, M.E. Mora-Ramos, M. El Haouari, F. Dujardin, & C.A. Duque, "Linear and nonlinear magneto-optical properties of an off-center single dopant in a spherical core/shell quantum dot." Physica B: Condensed Matter, 524 (2017) 64.
[32] W.H. Liu, Y. Qu, S.L. Ban, "Intersubband optical absorption between multi energy levels of electrons in InGaN/GaN spherical core-shell quantum dots." Superlattices and Microstructures, 102 (2017) 373.
[33] M.M. Woldemariam, "Nonlinear absorption coefficient and refractive index changes of two-dimensional two-electron quantum dot in rigid confinement." International Journal of Modern Physics B, 33 (2019) 1950078.
[34] R. Khordad and H. Bahramiyan, "Effects of electron–phonon interaction and impurity on optical properties of hexagonal-shaped quantum wires."
Pramana-Journal of Physics, 88 (2017) 50.
[35] M. Solaimani, "Intersubband optical properties of three electrons confined in multishell quantum dots: comparison of two semiconducting compounds." Journal of Computational Electronics, 17 (2018) 1135.
[36] M. Solaimani and S.M.A. Aleomraninejad, "Optical Properties of Energy-Dependent Effective Mass GaAs/GaxIn1−xAs and GaAs/AlxGa1−xAs Quantum Well Systems: A Shooting Method Study." Journal of Electronic Materials, 48 (2019) 942.
[37] M. Sabzevar, M. H. Ehsani, M. Solaimani and M. Ghorbani, "Optical properties of a few semiconducting heterostructures in the presence of Rashba spin-orbit interactions: a two-dimensional finite-difference numerical approach." Journal of the Optical Society of America B, 36 (2019) 1774.
[38] B. Farnam, M. Solaimani, S. M. A. Aleomraninejad, "Effect of electron–electron interactions on optical properties of GaN/AlN quantum wells: a nonlinear Schrödinger equation approach", Optical and Quantum Electronics, 51 (2019) 218.
[39] A. R. Kenari, M. Solaimani, "Optical properties of two dimensional fractal shaped nanostructures: Comparison of Sierpinski triangles and Sierpinski carpets." Optics Communications, 474 (2020) 126185.
[40] H. Saria, U. Yesilgulb, F. Unganb, S. Sakirogluc, E. Kasapoglud,, I. Sokmen, " Intense laser field effects on the intersubband optical absorption and refractive index change in the δ-doped GaAs quantum wells." Chemical Physics, 487 (2017) 11.
[41] L. Bouzaiene, H. Alamri, L. Sfaxi, H. Maaref, "Simultaneous effects of hydrostatic pressure, temperature and electric field on optical absorption in InAs/GaAs lens shape quantum dot." Journal of Alloys and Compounds, 655 (2016) 172.
[42] A. P. Ghosh, A. Mandal, S. Sarkar, M. Ghosh, " Influence of position-dependent effective mass on the nonlinear optical properties of impurity doped quantum dots in presence of Gaussian white noise." Optics Communications, 367 (2016) 325.
[43] H. Sari, E. Kasapoglu, S. Sakiroglu, U. Yesilgul, F. Ungand, I. Sökmen, "Combined effects of the intense laser field, electric and magnetic fields on the optical properties of n-type double δ-doped GaAs quantum well." Physica E, 90 (2017) 214.
[44] M. Solaimani, S. M. A. Aleomraninejad, L. Lavaei, " Optical rectification in quantum wells within different confinement and nonlinearity regimes." Superlattices and Microstructures, 111 (2017) 556.
[45] G. Todorovic, V. Milanovic, Z. Ikonic, D. Indjin, "The absorption cross section for bound–free transitions in semiconductor quantum dots." Solid State Communications, 110 (1999) 103.