[1] Antonio H. Neto, Castro. "The carbon new age." Materials Today, 13 (2010) 12.
[2] S. Ahn et al. "Emerging analysis on the preparation and application of graphene by bibliometry." Journal of Material Sciences & Engineering, 4 (2015) 2169.
[3] Matthew J. Allen, Vincent C. Tung, and Richard B. Kaner. "Honeycomb carbon: a review of graphene." Chemical Reviews, 110 (2010) 132.
[4] Z. Jin et al., "Graphene, graphene quantum dots and their applications in optoelectronics." Current Opinion in Colloid & Interface Science, 20 (2015) 439.
[5] Y. Kobayashi et al., "Observation of zigzag and armchair edges of graphite using scanning tunneling microscopy and spectroscopy." Physical Review B, 71 (2005) 193406.
[6] M. Pykal et al., "Modelling of graphene functionalization." Physical Chemistry Chemical Physics, 18 (2016) 6351.
[7] J. Granatier et al. "The nature of the binding of Au, Ag, and Pd to benzene, coronene, and graphene: from benchmark CCSD (T) calculations to plane-wave DFT calculations." Journal of Chemical Theory and Computation, 7 (2011) 3743.
[8] Paulo V.C. Medeiros, Gueorgui Kostov Gueorguiev, and Sven Stafström. "Benzene, coronene, and circumcoronene adsorbed on gold, and a gold cluster adsorbed on graphene: Structural and electronic properties." Physical Review B, 85 (2012) 205423.
[9] M. Malček and M. Natalia DS Cordeiro. "A DFT and QTAIM study of the adsorption of organic molecules over the copper-doped coronene and circumcoronene." Physica E: Low-dimensional Systems and Nanostructures, 95(2018) 59.
[10] Jennifer L. Weisman et al. "Time-dependent density functional theory calculations of large compact polycyclic aromatic hydrocarbon cations: implications for the diffuse interstellar bands." The Astrophysical Journal, 587 (2003) 256.
[11] E.M. Huff and P. Pulay. "A potential surface for the interaction between water and coronene as a model for a hydrophobic surface." Molecular Physics, 107(2009) 1197.
[12] J.P. Perdew, B. Kieron, and M. Ernzerhof. "Generalized gradient approximation made simple." Physical Review Letters, 77 (1996) 3865.
[13] John P. Perdew, "Density-functional approximation for the correlation energy of the inhomogeneous electron gas." Physical Review B, 33 (1986) 8822.
[14] Becke, Axel D. "Density-functional exchange-energy approximation with correct asymptotic behavior." Physical review A, 38 (1988) 3098.
[15] M. J. E. A. Frisch et al. "Gaussian ∼09 Revision D. 01." (2014).
[16] M. Singh, S. Lara, and S. Tlali. "Effects of size and shape on the specific heat, melting entropy and enthalpy of nanomaterials." Journal of Taibah University for Science, 11 (2017) 922.
[17] J. G. Dash "History of the search for continuous melting." Reviews of Modern Physics, 71 (1999) 1737.
[18] Zhu, Y. F., J. S. Lian, and Q. Jiang. "Modeling of the melting point, Debye temperature, thermal expansion coefficient, and the specific heat of nanostructured materials." The Journal of Physical Chemistry C, 113 (2009) 16896.
[19] James H. Rose, John Ferrante, and John R. Smith. "Universal binding energy curves for metals and bimetallic interfaces." Physical Review Letters, 47 (1981) 675.
[20] L. Dongwook et al. "Quantum confinement-induced tunable exciton states in graphene oxide." Scientific Reports, 3 (2013) 2250.
[21] G. Compagnini et al. "Ion beam induced defects in graphene: Raman spectroscopy and DFT calculations." Journal of Molecular Structure, 993 (2011) 506.
[22] C. Thomsen, M. Machón, and S. Bahrs. "Raman spectra and DFT calculations of the vibrational modes of hexahelicene." Solid state communications, 150 (2010) 628.
[23] M. W. Smith et al. "Structural analysis of char by Raman spectroscopy: Improving band assignments through computational calculations from first principles." Carbon, 100 (2016) 678.
[24] F. Tuinstra and J. Lo Koenig. "Raman spectrum of graphite." The Journal of Chemical Physics, 53 (1970) 1126.
[25] Andrea C. Ferrari et al. "Raman spectrum of graphene and graphene layers." Physical Review Letters, 97 (2006) 187401.
[26] R. P. Vidano et al. "Observation of Raman band shifting with excitation wavelength for carbons and graphites." Solid State Communications, 39 (1981) 341.
[27] N.S.R., N.C.W. (2017) Standard Reference Data Act.